skip to main content


Title: Linear‐Dendritic Alternating Copolymers
Abstract

Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th‐generation Hawker‐type dendron with two azide groups was synthesized, followed by a step‐growth azide‐alkyne “click” reaction between the 4th‐generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step‐growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase‐segregated nanorods in water.

 
more » « less
NSF-PAR ID:
10115306
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
131
Issue:
31
ISSN:
0044-8249
Page Range / eLocation ID:
p. 10682-10686
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th‐generation Hawker‐type dendron with two azide groups was synthesized, followed by a step‐growth azide‐alkyne “click” reaction between the 4th‐generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step‐growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase‐segregated nanorods in water.

     
    more » « less
  2. ABSTRACT

    This article reports a chain‐growth coupling polymerization of AB difunctional monomer via copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of ABn(n ≥ 2) monomers that spontaneously demonstrated a chain‐growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step‐growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole‐based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain‐growth mechanism and produced 3‐arm star polymers and multi‐arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example,Mw/Mn ~ 1.05. When acid‐degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 84–90

     
    more » « less
  3. Abstract

    Here, we demonstrate the applicability of self‐assembling linear‐dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self‐assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA‐PAMAM LDBCs to serve as nanocarriers for applications in drug delivery.

     
    more » « less
  4. ABSTRACT

    Herein, we present a facile and comprehensive synthetic methodology for the preparation of polyester‐polyamidoamine (PAMAM) (i.e., polyester: polylactide [PLA] (hydrophobic) and polyamidoamine, PAMAM [hydrophilic]) polymers. A library of PLA‐PAMAM linear dendritic block copolymers (LDBCs) in which bothlandd,lpolylactide were employed in mass ratios of 30:70, 50:50, 70:30, and 90:10 (PLA:PAMAM) were synthesized and analyzed. When placed in aqueous media, the immiscibility of the hydrophilic and hydrophobic segments leads to nanophase‐segregation exhibited as the formation of aggregates (e.g., vesicles, worms, and/or micelles). By employing both stereochemical configurations of PLA, the differentiation in mass ratios of PLA‐PAMAM aided in elucidating the structure–property relationships of the LDBC system and provided a means toward the control of nanoparticle morphology. Transmission electron microscopy and dynamic light scattering afford the size and shape of the nanoparticles with diameters ranging from 10.6 for low mass ratios to 122.4 nm for high mass ratios of PLA‐PAMAM and positive zeta‐potential values between +24.7 mV and +48.2 mV. Furthermore, small‐angle X‐ray scattering (SAXS) studies were employed to obtain more detailed information on the morphological assemblies constructed via direct dissolution. Such insights provide a pathway toward nanomaterials with unique morphologies and tunable properties deemed relevant in the development of next generation biomaterials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1448–1459

     
    more » « less
  5. ABSTRACT

    Copper‐catalyzed azide‐alkyne cycloaddition polymerization (CuAACP) of AB2monomers demonstrated a chain‐growth mechanism without any external ligand because of the complexation ofin situformed triazole groups with Cu catalysts. In this study, we explored the use of various ligands that affected the polymerization kinetics to tune the polymers’ molecular weights and the degree of branching (DB). Eight ligands were studied, including polyethylene glycol monomethyl ether (PEG350,Mn= 350), tris(benzyltriazolylmethyl)amine (TBTA), 2,6‐bis(1‐undecyl‐1H‐benzo[d]imidazol‐2‐yl)pyridine (Py(DBim)2), 2,2′‐bipyridyl (bpy), 4,4′‐di‐n‐nonyl‐2,2′‐bipyridine (dNbpy),N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA),N,N,N′,N″,N″‐penta(n‐butyl)diethylenetriamine (PBuDETA), andN,N,N′,N″,N″‐pentabenzyldiethylenetriamine (PBnDETA). All ligands except PEG350exhibited stronger coordination with Cu(I) than the polytriazole polymer, which freed the Cu catalyst from polymers and resulted in dominant step‐growth polymerization with simultaneous chain‐growth feature. Meanwhile, the use of PEG350ligand retained the confined Cu in the polymer, demonstrating a chain‐growth mechanism, but lower polymer molecular weights as compared with the no‐external‐ligand polymerization. Results indicated that aliphatic substituent groups on ligands had little effect on the molecular weights and DB of the polymers, but rigid aromatic substituent groups decreased both values. By varying the ligand species and amounts, hyperbranched polymers with DB value ranging from 0.53 ([TBTA]0/[Cu]0= 5) to 0.98 ([PMDETA]0/[Cu]0= 2) have been achieved. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2238–2244

     
    more » « less