skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: The Effects of Temporal Variation on Fitness, Functional Traits, and Species Distribution Patterns

Temporal variation is a powerful source of selection on life history strategies and functional traits in natural populations. Theory predicts that the rate and predictability of fluctuations should favor distinct strategies, ranging from phenotypic plasticity to bet-hedging, which are likely to have important consequences for species distribution patterns and their responses to environmental change. To date, we have few empirical studies that test those predictions in natural systems, and little is known about how genetic, environmental, and developmental factors interact to define the “fluctuation niche” of species in temporally variable environments. In this study, we evaluated the effects of hydrological variability on fitness and functional trait variation in three closely related plant species in the genus Lasthenia that occupy different microhabitats within vernal pool landscapes. Using a controlled greenhouse experiment, we manipulated the mean and variability in hydrological conditions by growing plants at different depths with respect to a shared water table and manipulating the magnitude of stochastic fluctuations in the water table over time. We found that all species had similarly high relative fitness above the water table, but differed in their sensitivities to water table fluctuations. Specifically, the two species from vernal pools basins, where soil moisture is controlled by a perched water table, were negatively affected by the stochasticity treatments. In contrast, a species from the upland habitat surrounding vernal pools, where stochastic precipitation events control soil moisture variation, was insensitive to experimental fluctuations in the water table. We found strong signatures of genetic, environmental (plastic), and developmental variation in four traits that can influence plant hydrological responses. Three of these traits varied across plant development and among experimental treatments in directions that aligned with constitutive differences among species, suggesting that multiple sources of variation align to facilitate phenotypic matching with the hydrological environment in Lasthenia. We found little evidence for predicted patterns of phenotypic plasticity and bet-hedging in species and traits from predictable and stochastic environments, respectively. We propose that selection for developmental shifts in the hydrological traits of Lasthenia species has reduced or modified selection for plasticity at any given stage of development. Collectively, these results suggest that variation in species’ sensitivities to hydrological stochasticity may explain why vernal pool Lasthenia species do not occur in upland habitat, and that all three species integrate genetic, environmental, and developmental information to manage the unique patterns of temporal hydrological variation in their respective microhabitats.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
Page Range / eLocation ID:
p. 503-516
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecological research has increasingly highlighted the importance of intraspecific variation in shaping the structure and function of communities and ecosystems. Indeed, the effects of intraspecific variation can match or exceed those of interspecific variation. Previous reviews of intraspecific variation in plant traits across heterogeneous environments have focused primarily onmeanphenotypic effects. We propose that a richer and fuller understanding of the ecological causes and consequences of intraspecific variation would be provided by partitioning traitvarianceinto its subcomponents (genetic, environment, genotype by environment interaction).

    We used a meta‐analysis of 352 sets of genetic, environment and genotype by environment (G×E) variation estimates from 72 studies of Salicaceae to compare these sources of variation across plant traits (growth, foliar nitrogen, defence compounds), insect herbivore performance metrics (e.g., survival, growth, fecundity) and environmental conditions (e.g., soil nutrients, water, defoliation).

    Our findings revealed that variation in levels of defence compounds (both condensed tannins and salicinoids) and insect herbivore performance were primarily genetically determined, while variation in plant growth and foliar nitrogen was more environmentally determined.

    Plasticity in plant growth, foliar nitrogen levels and insect herbivore performance varied substantially across different sites (year × location), and nutrient, water and carbon dioxide environments. Plasticity was lowest for chemical defence traits and all traits in contrasting ozone and defoliation environments.

    Our quantitative review also revealed several gaps in the literature, including a need for surveying more mature plants, a wider variety of insect herbivore species (e.g., leaf‐galling insects, specialist insects) and underrepresented environmental treatments (e.g., competition, defoliation, disease, light and water availability).

    Findings from this analysis highlight the importance of, and patterns within, intraspecific variation with respect to shaping the evolvability and plasticity of traits and governing the interactions of plants and insects.

    Aplain language summaryis available for this article.

    more » « less
  2. null (Ed.)
    Interactions among selection, gene flow, and drift affect the trajectory of adaptive evolution. In natural populations, the direction and magnitude of these processes can be variable across different spatial, temporal, or ontogenetic scales. Consequently, variability in evolutionary processes affects the predictability or stochasticity of microevolutionary outcomes. We studied an intertidal fish, Bathygobius cocosensis (Bleeker, 1854), to understand how space, time, and life stage structure genetic and phenotypic variation in a species with potentially extensive dispersal and a complex life cycle (larval dispersal preceding benthic recruitment). We sampled juvenile and adult life stages, at three sites, over three years. Genome-wide SNPs uncovered a pattern of chaotic genetic patchiness, that is, weak-but-significant patchy spatial genetic structure that was variable through time and between life stages. Outlier locus analyses suggested that targets of spatially divergent selection were mostly temporally variable, though a significant number of spatial outlier loci were shared between life stages. Head shape, a putatively ecologically responsive (adaptive) phenotype in B. cocosensis also exhibited high temporal variability within sites. However, consistent spatial relationships between sites indicated that environmental similarities among sites may generate predictable phenotype distributions across space. Our study highlights the complex microevolutionary dynamics of marine systems, where consideration of multiple ecological dimensions can reveal both predictable and stochastic patterns in the distributions of genetic and phenotypic variation. Such considerations probably apply to species that possess short, complex life cycles, have large dispersal potential and fecundities, and that inhabit heterogeneous environments. 
    more » « less
  3. Abstract

    Long‐term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment‐dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry‐down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up‐regulation of stress‐related and down‐regulation of growth‐related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co‐expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment‐dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses ofP. repenspopulations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.

    more » « less
  4. Summary

    Trade‐offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade‐offs typically fall along a productive growth to conservative, bet‐hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade‐off framework is not well understood.

    We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database.

    We demonstrate that storage is actively accumulated, as part of a conservative, bet‐hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the speciesPopulus trichocarpa, genetic trade‐offs show that for each additional unit of wood area growth (in cm2 yr−1) that genotypes invest in, they lose 1.2 to 1.7 units (mg g−1NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr−1), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots.

    Our findings impact our understanding of basic plant biology, fit storage into a widely used growth‐survival trade‐off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today.

    more » « less
  5. Abstract

    Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro‐evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade‐off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life‐history traits under study. InvasiveC. diffusapopulations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade‐off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances ofC. diffusamay have expanded in the invaded range. This observation could be due to selection for plastic, “general‐purpose” genotypes with broad environmental tolerances.

    more » « less