skip to main content


Title: Assessment of Climatology and Predictability of Mid-Atlantic Tropical Cyclone Landfalls in a High-Atmospheric-Resolution Seasonal Prediction System
Abstract

Tropical cyclone (TC) landfalls over the U.S. mid-Atlantic region, which include the so-called Sandy-like, or westward-curving, tracks, are among the most infrequent landfalls along the U.S. East Coast. However, when these events do occur, the resulting economic and societal consequences can be devastating. A recent example is Hurricane Sandy in 2012. Multimodel ensemble seasonal hindcasts conducted with a high-atmospheric-resolution coupled prediction system based on the ECMWF operational model (Project Minerva) are used here to compile the statistics of these rare events. Minerva hindcasts are found to exhibit skill in reproducing climatological characteristics of the mid-Atlantic TC landfalls particularly at the highest atmospheric horizontal spectral resolution of T1279 (16-km grid spacing). Historical forecasts are further interrogated to identify regional and large-scale environmental conditions associated with these rare TC tracks to better quantify their predictability on synoptic time scales, and their dependence on model resolution. Evolution of the large-scale atmospheric flow patterns leading to mid-Atlantic TC landfalls is analyzed using local finite-amplitude wave activity (LWA). We have identified large-amplitude quasi-stationary features in the LWA and sea surface temperature (SST) anomaly distributions that persist up to about a week leading to these land-falling events. A statistical model utilizing indices based on the LWA and SST anomalies as predictors is developed that exhibits skill (mostly at T1279) in predicting mid-Atlantic TC landfalls several days in advance. Implications of these results for longer time-scale predictions of mid-Atlantic TC landfalls including climate change projections are discussed.

 
more » « less
NSF-PAR ID:
10115412
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
8
ISSN:
0027-0644
Page Range / eLocation ID:
p. 2901-2917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal flooding poses the greatest threat to human life and is often the most common source of damage from coastal storms. From 1980 to 2020, the top 6, and 17 of the top 25, costliest natural disasters in the U.S. were caused by coastal storms, most of these tropical systems. The Delaware and Chesapeake Bays, two of the largest and most densely populated estuaries in the U.S. located in the Mid-Atlantic coastal region, have been significantly impacted by strong tropical cyclones in recent decades, notably Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Current scenarios of future climate project an increase in major hurricanes and the continued rise of sea levels, amplifying coastal flooding threat. We look at all North Atlantic tropical cyclones (TC) in the International Best Track Archive for Climate Stewardship (IBTrACS) database that came within 750 km of the Delmarva Peninsula from 1980 to 2019. For each TC, skew surge and storm tide are computed at 12 NOAA tide gauges throughout the two bays. Spatial variability of the detrended and normalized skew surge is investigated through cross-correlations, regional storm rankings, and comparison to storm tracks. We find Hurricanes Sandy (2012) and Isabel (2003) had the largest surge impact on the Delaware and Chesapeake Bay, respectively. Surge response to TCs in upper and lower bay regions are more similar across bays than to the opposing region in their own bay. TCs that impacted lower bay more than upper bay regions tended to stay offshore east of Delmarva, whereas TCs that impacted upper bay regions tended to stay to the west of Delmarva. Although tropical cyclones are multi-hazard weather events, there continues to be a need to improve storm surge forecasting and implement strategies to minimize the damage of coastal flooding. Results from this analysis can provide insight on the potential regional impacts of coastal flooding from tropical cyclones in the Mid-Atlantic. 
    more » « less
  2. This study examines the geographic and temporal characteristics of the springtime transition to the summer precipitation regime of isolated convection in the southeastern (SE) United States during 2009–12, using a high-resolution surface radar-based precipitation dataset. Isolated convection refers herein to isolated elements or small clusters of precipitation in radar imagery less than 100 km in horizontal dimension. Though the SE United States does not have a monsoon climate, it is useful to apply the established framework of monsoon onset to study the timing and regional variation of the onset of the summer isolated convection regime. Overall, isolated convection rain onset in the SE U.S. domain occurs in late May. Onset begins in south Florida in mid-April, continuing nearly simultaneously across the southeastern coastal plain in early to mid-May. In the northern domain, from Virginia to the Ohio Valley, onset generally occurs much later (mid-June to early July) with more variable onset timing. The sharpness of onset timing is most evident in the coastal plain and Florida. Results suggest the hypothesis, to be examined in a forthcoming study, that the timing of isolated convection onset in the spring may be triggered by specific synoptic-scale events within gradual seasonal changes in atmospheric conditions including extratropical cyclone tracks, convective instability, and the westward migration of the North Atlantic subtropical high. This approach may offer a useful framework for evaluating long-term changes in precipitation for subtropical regimes in an observational and modeling context.

     
    more » « less
  3. Abstract

    Summer rainfall in the southeast Prairie Pothole Region (SEPPR) is an important part of a vital wetland ecosystem that various species use as their habitat. We examine sources and pathways for summer rainfall moisture, large‐scale features influencing moisture delivery, and large‐scale connections related to summer moisture using the Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Analysis of HYSPLIT back trajectories shows that land is the primary moisture source for summer rainfall events indicating moisture recycling plays an important role in precipitation generation. The Great Plains Low‐Level Jet/Maya Express is the most prominent moisture pathway. It impacts events sourced by land and the Gulf of Mexico (GoM), the secondary moisture source. There is a coupling between land, atmosphere, and ocean conveyed by large‐scale climate connections between rainfall events and sea surface temperature (SST), Palmer Drought Severity Index, and 850‐mb heights. Land‐sourced events have a connection to the northern Pacific and northwest Atlantic Oceans, soil moisture over the central U.S., and low‐pressure systems over the SEPPR. GoM‐sourced events share the connection to soil moisture over the central U.S. but also show connections to SSTs in the North Pacific and Atlantic Oceans and the GoM, soil moisture in northern Mexico, and 850‐mb heights in the eastern Pacific Ocean. Both types of events show connections to high 850‐mb heights in the Caribbean which may reflect a connection to Bermuda High. These insights into moisture sources and pathways can improve skill in SEPPR summer rainfall predictions and benefit natural resource managers in the region.

     
    more » « less
  4. null (Ed.)
    Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability. 
    more » « less
  5. Abstract

    Extreme precipitation has increased in frequency and intensity across the Conterminous U.S. (CONUS). This trend is expected to continue under future climate change. The cause is a combination of thermodynamic (i.e., warmer temperatures increase the atmospheric moisture content) and dynamic changes (e.g., shifts in cyclone frequency and tracks). It is well‐established that thermodynamic changes will intensify extreme precipitation events, but the impacts of dynamic changes are more uncertain. Extreme events are, per definition, rare and occur in unusual weather situations that are distinctly different from regular day‐to‐day weather. We take advantage of this and identify extreme precipitation‐producing weather patterns (XWTs) for all major watersheds across the CONUS by using a novel algorithm. We show that a set of one to four XWTs per watershed are causing extreme precipitation accumulations. These XWTs can be detected based on their synoptic‐scale fingerprint and are associated with West Coast atmospheric rivers, troughing in the desert Southwest, cutoff lows and troughs in the central and northwestern plains, and tropical cyclones along the Gulf and Atlantic coast. The algorithm is flexible enough to provide reliable results for city to major watershed‐scales and can detect extremes that are unprecedented in the training record. Importantly, this approach allows us to assess long‐term trends in extreme precipitation dynamics and reveal that XWT frequencies increased significantly in most U.S. watersheds during the 20th century indicating that changes in the atmospheric dynamics played an important role in historic extreme precipitation increases.

     
    more » « less