Tropical cyclone (TC) landfalls over the U.S. mid-Atlantic region, which include the so-called Sandy-like, or westward-curving, tracks, are among the most infrequent landfalls along the U.S. East Coast. However, when these events do occur, the resulting economic and societal consequences can be devastating. A recent example is Hurricane Sandy in 2012. Multimodel ensemble seasonal hindcasts conducted with a high-atmospheric-resolution coupled prediction system based on the ECMWF operational model (Project Minerva) are used here to compile the statistics of these rare events. Minerva hindcasts are found to exhibit skill in reproducing climatological characteristics of the mid-Atlantic TC landfalls particularly at the highest atmospheric horizontal spectral resolution of T1279 (16-km grid spacing). Historical forecasts are further interrogated to identify regional and large-scale environmental conditions associated with these rare TC tracks to better quantify their predictability on synoptic time scales, and their dependence on model resolution. Evolution of the large-scale atmospheric flow patterns leading to mid-Atlantic TC landfalls is analyzed using local finite-amplitude wave activity (LWA). We have identified large-amplitude quasi-stationary features in the LWA and sea surface temperature (SST) anomaly distributions that persist up to about a week leading to these land-falling events. A statistical model utilizing indices based on the more »
- Publication Date:
- NSF-PAR ID:
- 10115412
- Journal Name:
- Monthly Weather Review
- Volume:
- 147
- Issue:
- 8
- Page Range or eLocation-ID:
- p. 2901-2917
- ISSN:
- 0027-0644
- Publisher:
- American Meteorological Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
Coastal flooding poses the greatest threat to human life and is often the most common source of damage from coastal storms. From 1980 to 2020, the top 6, and 17 of the top 25, costliest natural disasters in the U.S. were caused by coastal storms, most of these tropical systems. The Delaware and Chesapeake Bays, two of the largest and most densely populated estuaries in the U.S. located in the Mid-Atlantic coastal region, have been significantly impacted by strong tropical cyclones in recent decades, notably Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Current scenarios of future climate project an increase in major hurricanes and the continued rise of sea levels, amplifying coastal flooding threat. We look at all North Atlantic tropical cyclones (TC) in the International Best Track Archive for Climate Stewardship (IBTrACS) database that came within 750 km of the Delmarva Peninsula from 1980 to 2019. For each TC, skew surge and storm tide are computed at 12 NOAA tide gauges throughout the two bays. Spatial variability of the detrended and normalized skew surge is investigated through cross-correlations, regional storm rankings, and comparison to storm tracks. We find Hurricanes Sandy (2012) and Isabel (2003) had the largest surgemore »
-
This study examines the geographic and temporal characteristics of the springtime transition to the summer precipitation regime of isolated convection in the southeastern (SE) United States during 2009–12, using a high-resolution surface radar-based precipitation dataset. Isolated convection refers herein to isolated elements or small clusters of precipitation in radar imagery less than 100 km in horizontal dimension. Though the SE United States does not have a monsoon climate, it is useful to apply the established framework of monsoon onset to study the timing and regional variation of the onset of the summer isolated convection regime. Overall, isolated convection rain onset in the SE U.S. domain occurs in late May. Onset begins in south Florida in mid-April, continuing nearly simultaneously across the southeastern coastal plain in early to mid-May. In the northern domain, from Virginia to the Ohio Valley, onset generally occurs much later (mid-June to early July) with more variable onset timing. The sharpness of onset timing is most evident in the coastal plain and Florida. Results suggest the hypothesis, to be examined in a forthcoming study, that the timing of isolated convection onset in the spring may be triggered by specific synoptic-scale events within gradual seasonal changes in atmosphericmore »
-
Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomalymore »
-
Abstract Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δ
x ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowedquantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 timesmore »Significance Statement This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δ
x ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct. -
Abstract Tropical cyclones (TCs) undergoing extratropical transition (ET) can develop into intense cyclonic systems accompanied by high-impact weather in areas far removed from the original TC. This study presents an analysis of multiseasonal global simulations representative of present-day and projected future climates using the Model for Prediction Across Scales–Atmosphere (MPAS-A), with high resolution (15-km grid) throughout the Northern Hemisphere. TCs are tracked as minima in sea level pressure (SLP) accompanied by a warm core, and TC tracks are extended into the extratropical phase based on local minima in SLP and use of a cyclone phase space method. The present-day simulations adequately represent observed ET characteristics such as frequency, location, and seasonal cycles throughout the Northern Hemisphere. The most significant changes in future ET events occur in the North Atlantic (NATL) basin. Here, a more favorable background environment, a shift toward stronger TC warm cores in the lower troposphere, and a significant poleward shift in TC location lead to a ~40% increase in the number of NATL ET events and a ~6% increase in the fraction of TCs undergoing ET. This equates to approximately 1–2 additional ET events per year in this region. In the future simulations, ET in the NATLmore »