Quantifying the influence of sea spray on air‐sea fluxes under high‐wind conditions is challenging due to a variety of factors. Among existing models, the so‐called bulk air‐sea flux model is commonly used in meteorological applications due to its simplicity, which often involves strong but untested assumptions on spray‐mediated heat fluxes and feedback effects. For example, a common assumption is to treat each droplet size as an independent contribution; that is, it does not interact with other sizes. Thus, the interactions between different size classes of spray are often neglected. In this study, we focus on the polydispersity of the spray size distribution and investigate the appropriateness of assuming an independent contribution from different spray size classes. We implement direct numerical simulations (DNS) with Lagrangian tracking of spray droplets. Based on DNS results, the bulk spray model fails to capture the interactions between different sizes that are observed directly from the droplet and feedback statistics in DNS. Thus, assuming independent contributions from spray droplets results in significant overestimates on the total heat fluxes. We further test different representative sizes of a spray size distribution. We find that the volume‐weighted representative size is capable of predicting the droplet‐modified temperature and humidity fields and generally captures the vertical profiles of spray‐mediated and interfacial heat fluxes. The results indicate that the computation of spray‐mediated fluxes can be simplified in large‐scale parameterizations.
A common technique for estimating the sea surface generation functions of spray and aerosols is the so-called flux–profile method, where fixed-height concentration measurements are used to infer fluxes at the surface by assuming a form of the concentration profile. At its simplest, this method assumes a balance between spray emission and deposition, and under these conditions the concentration profile follows a power-law shape. It is the purpose of this work to evaluate the influence of waves on this power-law theory, as well as investigate its applicability over a range of droplet sizes. Large-eddy simulations combined with Lagrangian droplet tracking are used to resolve the turbulent transport of spray droplets over moving, monochromatic waves at the lower surface. The wave age and the droplet diameter are varied, and it is found that droplets are highly influenced both by their inertia (i.e., their inability to travel exactly with fluid streamlines) and the wave-induced turbulence. Deviations of the vertical concentration profiles from the power-law theory are found at all wave ages and for large droplets. The dynamics of droplets within the wave boundary layer alter their net vertical fluxes, and as a result, estimates of surface emission based on the flux–profile method can yield significant errors. In practice, the resulting implication is that the flux–profile method may unsuitable for large droplets, and the combined effect of inertia and wave-induced turbulence is responsible for the continued spread in their surface source estimates.
more » « less- Award ID(s):
- 1829515
- NSF-PAR ID:
- 10115831
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 49
- Issue:
- 7
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- p. 1789-1807
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract An experimental investigation of droplet generation by a plunging breaking wave is presented. In this work, simultaneous measurements of the wave crest profile evolution and of droplets ranging in radius down to 50 μm for a mechanically generated plunging breaker during many repeated breaking events in freshwater are performed. We find three distinct time zones of droplet production, first when the jet impacts the free surface upstream of the wave crest, second when the large air bubbles entrapped by the plunging jet impact reach the free surface and burst, and third when smaller bubbles burst upon reaching the free surface later in the breaking process. These subprocesses account for 22%, 44%, and 34%, respectively, of the average of 653 droplets produced per breaking event. The probability distributions of the ranges of large and small droplet radii are well represented by power law functions that intersect at a radius of 418 μm.
-
An experimental study of the dynamics and droplet production in three mechanically generated plunging breaking waves is presented in this two-part paper. In the present paper (Part 2), in-line cinematic holography is used to measure the positions, diameters (
), times and velocities of droplets generated by the three plunging breaking waves studied in Part 1 (Erinin$d\geq 100\ \mathrm {\mu }{\rm m}$ et al. ,J. Fluid Mech. , vol. 967, 2023, A35) as the droplets move up across a horizontal measurement plane located just above the wave crests. It is found that there are four major mechanisms for droplet production: closure of the indentation between the top surface of the plunging jet and the splash that it creates, the bursting of large bubbles that were entrapped under the plunging jet at impact, splashing and bubble bursting in the turbulent zone on the front face of the wave and the bursting of small bubbles that reach the water surface at the crest of the non-breaking wave following the breaker. The droplet diameter distributions for the entire droplet set for each breaker are fitted with power-law functions in separate small- and large-diameter regions. The droplet diameter where these power-law functions cross increases monotonically from 820 to 1480 from the weak to the strong breaker, respectively. The droplet diameter and velocity characteristics and the number of the droplets generated by the four mechanisms are found to vary significantly and the processes that create these differences are discussed.$\mathrm {\mu }{\rm m}$ -
Abstract The Eulerian multifluid mathematical model is developed to describe the marine atmospheric boundary layer laden with sea spray under the high-wind condition of a hurricane. The model considers spray and air as separate continuous interacting turbulent media and employs the multifluid E –ϵ closure. Each phase is described by its own set of coupled conservation equations and characterized by its own velocity. Such an approach enables us to accurately quantify the interaction between spray and air and pinpoint the effect of spray on the vertical momentum transport much more precisely than could be done with traditional mixture-type approaches. The model consistently quantifies the effect of spray inertia and the suppression of air turbulence due to two different mechanisms: the turbulence attenuation, which results from the inability of spray droplets to fully follow turbulent fluctuations, and the vertical transport of spray against the gravity by turbulent eddies. The results of numerical and asymptotic analyses show that the turbulence suppression by spray overpowers its inertia several meters above wave crests, resulting in a noticeable wind acceleration and the corresponding reduction of the drag coefficient from the reference values for a spray-free atmosphere. This occurs at much lower than predicted previously spray volume fraction values of ∼10 −5 . The falloff of the drag coefficient from its reference values is more strongly pronounced at higher altitudes. The drag coefficient reaches its maximum at spray volume fraction values of ∼10 −4 , which is several times smaller than predicted by mixture-type models.more » « less
-
Abstract This study focuses on the influence of the sea spray polydispersity on the vertical transport of momentum in a turbulent marine atmospheric boundary layer in high-wind conditions of a hurricane. The Eulerian multifluid model treating air and spray droplets of different sizes as interacting interpenetrating continua is developed and its numerical solutions are analyzed. Several droplet size distribution spectra and correlation laws relating wind speed and spray production intensity are considered. Polydisperse model solutions have confirmed the difference between the roles small and large spray droplets play in modifying the turbulent momentum transport that have been previously identified by monodisperse spray models. The obtained results have also provided a physical explanation for the previously unreported phenomenon of the formation of thin low-eddy-viscosity “sliding” layers in strongly turbulent boundary layer flows laden with predominantly fine spray.
Significance Statement Achieving better accuracy in hurricane forecasts requires an in-depth understanding and accurate modeling of the ocean spray effect on the vertical fluxes of momentum and heat in a hurricane boundary layer. It has been shown that this effect depends on the size distribution of spray droplets, also known as spray polydispersity. This study aims to investigate the influence of a polydisperse spray on the vertical momentum transport within hurricane boundary layers by employing a modern theory of turbulent disperse multiphase flows.