Proteins and nucleic acids participate in essentially every biochemical process in living organisms, and the elucidation of their structure and motions is essential for our understanding how these molecular machines perform their function. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful versatile technique that provides critical information on the molecular structure and dynamics. Spin-relaxation data are used to determine the overall rotational diffusion and local motions of biological macromolecules, while residual dipolar couplings (RDCs) reveal local and long-range structural architecture of these molecules and their complexes. This information allows researchers to refine structures of proteins and nucleic acids and providesmore »
Enabling rich data sharing for Science Gateways via the SeedMeLab platform
Abstract Science Gateways provide an easily accessible and powerful computing environment for researchers. These are built around a set of software tools that are frequently and heavily used by large number of researchers in specific domains. Science Gateways have been catering to a growing need of researchers for easy to use computational tools, however their usage model is typically single user-centric. As scientific research becomes ever more team oriented, the need driven by user-demand to support integrated collaborative capabilities in Science Gateways is natural progression. Ability to share data/results with others in an integrated manner is an important and frequently requested capability. In this article we will describe and discuss our work to provide a rich environment for data organization and data sharing by integrating the SeedMeLab (formerly SeedMe2) platform with two Science Gateways: CIPRES and GenApp. With this integration we also demonstrate SeedMeLab’s extensible features and how Science Gateways may incorporate and realize FAIR data principles in practice and transform into community data hubs.
- Publication Date:
- NSF-PAR ID:
- 10116255
- Journal Name:
- Proceedings of Gateways 2019
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neuroscientists are increasingly relying on high performance/throughput computing resources for experimentation on voluminous data, analysis and visualization at multiple neural levels. Though current science gateways provide access to computing resources, datasets and tools specific to the disciplines, neuroscientists require guided knowledge discovery at various levels to accomplish their research/education tasks. The guidance can help them to navigate them through relevant publications, tools, topic associations and cloud platform options as they accomplish important research and education activities. To address this need and to spur research productivity and rapid learning platform development, we present “OnTimeRecommend”, a novel recommender system that comprises ofmore »
-
Walker, D. ; Stankovski, V. ; Kalyanam, R. (Ed.)Scholars worldwide leverage science gateways/virtual research environments (VREs) for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this article, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of, for example, their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standardsmore »
-
Recommender-as-a-Service with Chatbot Guided Domain-science Knowledge Discovery in a Science GatewayScientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration ofmore »
-
The Reproducible Software Environment (Resen) is an open-source software tool enabling computationally reproducible scientific results in the geospace science community. Resen was developed as part of a larger project called the Integrated Geoscience Observatory (InGeO), which aims to help geospace researchers bring together diverse datasets from disparate instruments and data repositories, with software tools contributed by instrument providers and community members. The main goals of InGeO are to remove barriers in accessing, processing, and visualizing geospatially resolved data from multiple sources using methodologies and tools that are reproducible. The architecture of Resen combines two mainstream open source software tools, Dockermore »