skip to main content

Title: MetaBMF: a scalable binning algorithm for large-scale reference-free metagenomic studies
Abstract Motivation

Metagenomics studies microbial genomes in an ecosystem such as the gastrointestinal tract of a human. Identification of novel microbial species and quantification of their distributional variations among different samples that are sequenced using next-generation-sequencing technology hold the key to the success of most metagenomic studies. To achieve these goals, we propose a simple yet powerful metagenomic binning method, MetaBMF. The method does not require prior knowledge of reference genomes and produces highly accurate results, even at a strain level. Thus, it can be broadly used to identify disease-related microbial organisms that are not well-studied.

Results

Mathematically, we count the number of mapped reads on each assembled genomic fragment cross different samples as our input matrix and propose a scalable stratified angle regression algorithm to factorize this count matrix into a product of a binary matrix and a nonnegative matrix. The binary matrix can be used to separate microbial species and the nonnegative matrix quantifies the species distributions in different samples. In simulation and empirical studies, we demonstrate that MetaBMF has a high binning accuracy. It can not only bin DNA fragments accurately at a species level but also at a strain level. As shown in our example, we can accurately more » identify the Shiga-toxigenic Escherichia coli O104: H4 strain which led to the 2011 German E.coli outbreak. Our efforts in these areas should lead to (i) fundamental advances in metagenomic binning, (ii) development and refinement of technology for the rapid identification and quantification of microbial distributions and (iii) finding of potential probiotics or reliable pathogenic bacterial strains.

Availability and implementation

The software is available at https://github.com/didi10384/MetaBMF.

« less
Authors:
 ;  ;  ;
Publication Date:
NSF-PAR ID:
10116521
Journal Name:
Bioinformatics
ISSN:
1367-4803
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Metagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample.

    Results

    We develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstratemore »that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs.

    Availability and implementation

    HiFine is available at https://github.com/dyxstat/HiFine.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  2. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Reconstructing microbial genomes from metagenomic short-read data can be challenging due to the unknown and uneven complexity of microbial communities. This complexity encompasses highly diverse populations, which often includes strain variants. Reconstructing high-quality genomes is a crucial part of the metagenomic workflow, as subsequent ecological and metabolic inferences depend on their accuracy, quality, and completeness. In contrast to microbial communities in other ecosystems, there has been no systematic assessment of genome-centric metagenomic workflows for drinking water microbiomes. In this study, we assessed the performance of a combination of assembly and binning strategies for time series drinking water metagenomes that were collected over 6 months. The goal of this study was to identify the combination of assembly and binning approaches that result in high-quality and -quantity metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our findings suggest that the metaSPAdes coassembly strategies had the best performance, as they resulted in larger and less fragmented assemblies, with at least 85% of the sequence data mapping to contigs greater than 1 kbp. Furthermore, a combination of metaSPAdes coassembly strategies and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least 70% of the metagenomes based on read recruitment. Utilizing different assembly/binningmore »approaches also assists in the reconstruction of unique MAGs from closely related species that would have otherwise collapsed into a single MAG using a single workflow. Overall, our study suggests that leveraging multiple binning approaches with different metaSPAdes coassembly strategies may be required to maximize the recovery of good-quality MAGs. IMPORTANCE Drinking water contains phylogenetic diverse groups of bacteria, archaea, and eukarya that affect the esthetic quality of water, water infrastructure, and public health. Taxonomic, metabolic, and ecological inferences of the drinking water microbiome depend on the accuracy, quality, and completeness of genomes that are reconstructed through the application of genome-resolved metagenomics. Using time series metagenomic data, we present reproducible genome-centric metagenomic workflows that result in high-quality and -quantity genomes, which more accurately signifies the sequenced drinking water microbiome. These genome-centric metagenomic workflows will allow for improved taxonomic and functional potential analysis that offers enhanced insights into the stability and dynamics of drinking water microbial communities.« less
  3. McBain, Andrew J. (Ed.)
    ABSTRACT The recovery of metagenome-assembled genomes (MAGs) from metagenomic data has recently become a common task for microbial studies. The strengths and limitations of the underlying bioinformatics algorithms are well appreciated by now based on performance tests with mock data sets of known composition. However, these mock data sets do not capture the complexity and diversity often observed within natural populations, since their construction typically relies on only a single genome of a given organism. Further, it remains unclear if MAGs can recover population-variable genes (those shared by >10% but <90% of the members of the population) as efficiently as core genes (those shared by >90% of the members). To address these issues, we compared the gene variabilities of pathogenic Escherichia coli isolates from eight diarrheal samples, for which the isolate was the causative agent, against their corresponding MAGs recovered from the companion metagenomic data set. Our analysis revealed that MAGs with completeness estimates near 95% captured only 77% of the population core genes and 50% of the variable genes, on average. Further, about 5% of the genes of these MAGs were conservatively identified as missing in the isolate and were of different (non- Enterobacteriaceae ) taxonomic origin, suggesting errorsmore »at the genome-binning step, even though contamination estimates based on commonly used pipelines were only 1.5%. Therefore, the quality of MAGs may often be worse than estimated, and we offer examples of how to recognize and improve such MAGs to sufficient quality by (for instance) employing only contigs longer than 1,000 bp for binning. IMPORTANCE Metagenome assembly and the recovery of metagenome-assembled genomes (MAGs) have recently become common tasks for microbiome studies across environmental and clinical settings. However, the extent to which MAGs can capture the genes of the population they represent remains speculative. Current approaches to evaluating MAG quality are limited to the recovery and copy number of universal housekeeping genes, which represent a small fraction of the total genome, leaving the majority of the genome essentially inaccessible. If MAG quality in reality is lower than these approaches would estimate, this could have dramatic consequences for all downstream analyses and interpretations. In this study, we evaluated this issue using an approach that employed comparisons of the gene contents of MAGs to the gene contents of isolate genomes derived from the same sample. Further, our samples originated from a diarrhea case-control study, and thus, our results are relevant for recovering the virulence factors of pathogens from metagenomic data sets.« less
  4. Abstract Background

    Total DNA (intracellular, iDNA and extracellular, eDNA) from ancient permafrost records the mixed genetic repository of the past and present microbial populations through geological time. Given the exceptional preservation of eDNA under perennial frozen conditions, typical metagenomic sequencing of total DNA precludes the discrimination between fossil and living microorganisms in ancient cryogenic environments. DNA repair protocols were combined with high throughput sequencing (HTS) of separate iDNA and eDNA fraction to reconstruct metagenome-assembled genomes (MAGs) from ancient microbial DNA entrapped in Siberian coastal permafrost.

    Results

    Despite the severe DNA damage in ancient permafrost, the coupling of DNA repair and HTS resulted in a total of 52 MAGs from sediments across a chronosequence (26–120 kyr). These MAGs were compared with those derived from the same samples but without utilizing DNA repair protocols. The MAGs from the youngest stratum showed minimal DNA damage and thus likely originated from viable, active microbial species. Many MAGs from the older and deeper sediment appear related to past aerobic microbial populations that had died upon freezing. MAGs from anaerobic lineages, includingAsgardarchaea, however exhibited minimal DNA damage and likely represent extant living microorganisms that have become adapted to the cryogenic and anoxic environments. The integration of aspartic acidmore »racemization modeling and metaproteomics further constrained the metabolic status of the living microbial populations. Collectively, combining DNA repair protocols with HTS unveiled the adaptive strategies of microbes to long-term survivability in ancient permafrost.

    Conclusions

    Our results indicated that coupling of DNA repair protocols with simultaneous sequencing of iDNA and eDNA fractions enabled the assembly of MAGs from past and living microorganisms in ancient permafrost. The genomic reconstruction from the past and extant microbial populations expanded our understanding about the microbial successions and biogeochemical alterations from the past paleoenvironment to the present-day frozen state. Furthermore, we provided genomic insights into long-term survival mechanisms of microorganisms under cryogenic conditions through geological time. The combined strategies in this study can be extrapolated to examine other ancient non-permafrost environments and constrain the search for past and extant extraterrestrial life in permafrost and ice deposits on Mars.

    « less
  5. Abstract Background

    With the advent of metagenomics, the importance of microorganisms and how their interactions are relevant to ecosystem resilience, sustainability, and human health has become evident. Cataloging and preserving biodiversity is paramount not only for the Earth’s natural systems but also for discovering solutions to challenges that we face as a growing civilization. Metagenomics pertains to the in silico study of all microorganisms within an ecological community in situ,however, many software suites recover only prokaryotes and have limited to no support for viruses and eukaryotes.

    Results

    In this study, we introduce theViral Eukaryotic Bacterial Archaeal(VEBA) open-source software suite developed to recover genomes from all domains. To our knowledge,VEBAis the first end-to-end metagenomics suite that can directly recover, quality assess, and classify prokaryotic, eukaryotic, and viral genomes from metagenomes.VEBAimplements a novel iterative binning procedure and hybrid sample-specific/multi-sample framework that yields more genomes than any existing methodology alone.VEBAincludes a consensus microeukaryotic database containing proteins from existing databases to optimize microeukaryotic gene modeling and taxonomic classification.VEBAalso provides a unique clustering-based dereplication strategy allowing for sample-specific genomes and genes to be directly compared across non-overlapping biological samples. Finally,VEBAis the only pipeline that automates the detection of candidate phyla radiation bacteria and implements the appropriate genomemore »quality assessments.VEBA’s capabilities are demonstrated by reanalyzing 3 existing public datasets which recovered a total of 948 MAGs (458 prokaryotic, 8 eukaryotic, and 482 viral) including several uncharacterized organisms and organisms with no public genome representatives.

    Conclusions

    TheVEBAsoftware suite allows for the in silico recovery of microorganisms from all domains of life by integrating cutting edge algorithms in novel ways.VEBAfully integrates both end-to-end and task-specific metagenomic analysis in a modular architecture that minimizes dependencies and maximizes productivity. The contributions ofVEBAto the metagenomics community includes seamless end-to-end metagenomics analysis but also provides users with the flexibility to perform specific analytical tasks.VEBAallows for the automation of several metagenomics steps and shows that new information can be recovered from existing datasets.

    « less