skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous Production of Water‐Soluble Nanocrystals through Anti‐Solvent Precipitation in a Fluidic Device
Abstract This paper describes a simple and robust method for the continuous production of water‐soluble nanocrystals using anti‐solvent precipitation under diffusion control in a fluidic device. We use sodium chloride (NaCl) as an example to demonstrate the concept. In a typical process, aqueous NaCl and ethanol (the anti‐solvent) serve as the focused and focusing phases, respectively, for the generation of a coaxial‐flow system. Upon contact with each other, the rapid diffusion between water and ethanol leads to the formation of NaCl nanocrystals at the interface while a gradient in NaCl concentration is created along the flow direction. The nucleation and growth of NaCl nanocrystals can be readily tuned by varying the hydrodynamic parameters such as the ratio between the flow rates of the two phases and the total volumetric rate. By optimizing these parameters, we are able to produce NaCl nanocubes and nanospheres as small as 20 nm and 6 nm, respectively, while attaining a narrow distribution in size. We have also successfully generated KCl nanocrystals with similar controls, demonstrating the generality of this method for the production of water‐soluble nanocrystals.  more » « less
Award ID(s):
1634687
PAR ID:
10116622
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
5
Issue:
9
ISSN:
2199-692X
Format(s):
Medium: X Size: p. 1131-1136
Size(s):
p. 1131-1136
Sponsoring Org:
National Science Foundation
More Like this
  1. The direct synthesis of highly water-soluble nanoparticles has attracted intensive interest, but systematic size control has not been reported. Here, we developed a general method for synthesizing monodisperse water-soluble iron oxide nanoparticles with nanometer-scale size increments from 4 nm to 13 nm in a single reaction. Precise size control was achieved by continuous growth in an amphiphilic solvent, diethylene glycol (DEG), where the growth step was separated from the nucleation step by sequential addition of a reactant. There was only one reactant in the synthesis and no need for additional capping agents and reducing agents. This study reveals the “living growth” character of iron oxide nanoparticles synthesised in an amphiphilic solvent. The synthetic method shows high reproducibility. The as-prepared iron oxide nanoparticles are extremely water soluble without any surface modification. Surprisingly, the synthesized 9 nm iron oxide nanoparticles exhibit extremely high transversal and longitudinal relaxivities of 425 mM −1 s −1 and 32 mM −1 s −1 respectively, which is among the highest transversal relaxivity in the literature for sub-10 nm spherical nanoparticles. This study will not only shed light on the continuous growth phenomenon of iron oxide nanoparticles in an amphiphilic solvent, but could also stimulate the synthesis and application of iron oxide nanoparticles. The continuous growth method could be further extended to other materials for the controlled synthesis of water-soluble nanoparticles. 
    more » « less
  2. The optical properties of indocyanine green (ICG) as a near-infrared (NIR) fluorescence dye depend on the nature of the solvent medium and the dye concentration. In the ICG absorption spectra of water, at high concentrations, there were absorption maxima at 700 nm, implying H-aggregates. With ICG dilution, the main absorption peak was at 780 nm, implying monomers. However, in ethanol, the absorption maximum was 780 nm, and the shapes of the absorption spectra were identical regardless of the ICG concentration, indicating that ICG in ethanol exists only as a monomer without H-aggregates. We found that emission was due to the monomer form and decreased with H-aggregate formation. In the fluorescence spectra, the 820 nm emission band was dominant at low concentrations, whereas at high concentrations, we found that the emission peaks were converted to 880 nm, suggesting a new form via the twisted intramolecular charge transfer (TICT) process of ICG. The NIR fluorescence intensity of ICG in ethanol was approximately 12- and 9-times brighter than in water in the NIR-I and -II regions, respectively. We propose an energy diagram of ICG to describe absorptive and emissive transitions through the ICG structures such as the monomer, H-aggregated, and TICT monomer forms. 
    more » « less
  3. We present a method for thephotochemical conversion of the inverse spinel iron oxides in which the mixed-valent magnetite phase (Fe 3 O 4 ) is accessed from the maghemite phase (γ-Fe 2 O 3 ) via a stable, colloidal nanocrystal-to-nanocrystal transformation. Anaerobic UV-irradiation of colloidal γ-Fe 2 O 3 nanocrystals in the presence of ethanol as a sacrificial reductant yields reduction of some Fe 3+ to Fe 2+ , resulting in a topotactic reduction of γ-Fe 2 O 3 to Fe 3 O 4 . This reduction is evidenced by the emergence of charge-transfer absorption and increased d -spacing in UV-irradiated nanocrystals. Redox titrations reveal that ∼43% of Fe in < d > = 4.8 nm nanocrystals can be reduced with this method and comparison of optical data indicates similar reduction levels in < d > = 7.3 and 9.0 nm nanocrystals. Addition of excess acetaldehyde during photoreduction shows that the extent of reduction is likely pinned by the hydrogenation of acetaldehyde back to ethanol and can be increased with the use of an alkylborohydride sacrificial reductant. Photochemical reduction is accompanied by increased magnetization and emergence of magnetic features characteristic of Fe 3 O 4 . Overall, this work provides a reversible, post-synthetic strategy to obtain Fe 3 O 4 nanocrystals with well-controlled Fe 2+ compositions. 
    more » « less
  4. Organic solvent filtration is an important industrial process. It is widely used in pharmaceutical manufacturing, chemical processing industry, semiconductor industry, auto assembly etc. Most of the particle filtration studies reported in open literature dealt with aqueous suspension medium. The current work has initiated a study of cross-flow solvent filtration behavior of microporous ethylene chlorotrifluoroethylene (ECTFE) membranes using 12 nm silica nanoparticles suspended in an aqueous solution containing 25% ethanol. In the constant pressure mode of operation of cross-flow microfiltration (MF), permeate samples were collected at different time intervals. The permeate particle size distribution (PSD) results for different experiments were identical. Particle agglomerates having less than 100 nm size can pass through the membrane; some fouling was observed. The governing fouling mechanisms for tests operated using 3.8×10−3 kg/m3 (3.8 ppm) at 6.9×103 Pag and 1.4×104 Pag were pore blocking. For tests conducted using 3.8×10−3 kg/m3 (3.8 ppm) at 27.6×103 Pag (4 psig) and 1.9×10−3 kg/m3 (1.9 ppm) at 6.9×103, 13.8×103 and 27.6×103 Pag (1, 2 and 4 psig), the mechanism was membrane resistance control. Less particles got embedded in membrane pores in experiments operated using suspensions with lower or higher particle concentrations with a higher transmembrane pressure. This is in good agreement with the values of the shear rate in the pore flow and scanning electron microscope images of the membrane after MF. In the dead-end mode of operation of solvent filtration using methanol, ethanol and 2-propanol, the permeate flux behavior follows Jmethanol > Jethanol > J2-propanol at all testing pressures. The values of permeance (kg/m2-s-Pa) determined from the slope of the linear plot of filtration flux vs. the applied pressure difference across the membrane, were 3.9×10−4, 2.3×10−4 and 3.0×10−5 for methanol, ethanol and 2-propanol, respectively. Further exploration was made on solvent sorption results reported earlier. The critical temperature of selected solvents shows a better correlation with solvent sorption rather than the solubility parameter. 
    more » « less
  5. Abstract Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high‐speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high‐boiling‐point solvents such as n‐methyl‐2‐pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data‐driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr−1with the resulting graphene nanoplatelets being suitable for screen‐printed micro‐supercapacitors. Finally, life cycle assessment reveals that ethanol‐based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity. 
    more » « less