skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: The effects of buffer condition on the fouling behavior of MVM virus filtration of an Fc‐fusion protein
Abstract

A combined pore blockage and cake filtration model was applied to the virus filtration of an Fc‐fusion protein using the three commercially available filters, F‐1, F‐2, and F‐3 in a range of buffer conditions including sodium‐phosphate and tris‐acetate buffers with and without 200 mM NaCl at pH 7.5. The fouling behaviors of the three filters for the feed solutions spiked with minute virus of mice were described well by this combined model for all the solution conditions. This suggests that fouling of the virus filters is dominated by the pore blockage mechanism during the initial stage of the filtration and transformed to the cake filtration mechanism during the later stage of the filtration. Both flux and transmembrane resistance can be described well by this model. The pore blockage rate and the rate of increase of protein layer resistance over blocked pores are found to be affected by membrane properties as well as the solution conditions resulting from the modulation of interactions between virus, protein, and membrane by the solution conditions.

 
more » « less
NSF-PAR ID:
10116684
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
116
Issue:
10
ISSN:
0006-3592
Page Range / eLocation ID:
p. 2621-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tangential flow filtration (TFF) has many advantages for bioreactor harvesting, as the permeate could be introduced directly to the subsequent capture step. However, membrane fouling has limited its widespread use. This is particularly problematic given the high cell densities encountered today. Here, a reverse asymmetric membrane, where the more open surface faces the feed stream and the tighter barrier layer faces the permeate stream, has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of yeast suspensions has been conducted under a range of conditions. The yeast cells are trapped in the open pore structure. The membrane stabilizes an internal porous cake that acts like a depth filter. This stabilized cake layer can remove particulate matter that would foul the barrier layer if it faced the feed stream. As filtration continues, a surface cake layer forms on the membrane surface. A resistance in series model has been developed to describe the permeate flux during TFF. The model contains three fitted parameters which can easily be determined from constant pressure normal flow filtration experiments and total recycle constant flux TFF experiments. The model can be used to estimate the capacity of the filter for a given feed stream. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor harvesting.

     
    more » « less
  2. To unravel fouling and defouling mechanisms of protein, saccharides and natural organic matters (NOM) on polymeric membrane during filtration, this study investigated filtration characteristics on polyvinyl chloride (PVC) ultrafiltration membranes with bovine serum albumin, dextran, humic acid as model foulants. Membrane fouling and defouling performances were analyzed through monitoring the flux decline during filtration and flux recovery during physical backwash. Physico-chemical properties (e.g., hydrophobicity and surface charge) of PVC membrane and foulants were characterized, which were used in the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory to calculate the interaction energies between membrane foulant and foulant-foulant. The results showed that at the later filtration stages the fouling rate was strongly correlated with the deposition rate, which was determined by the interaction energy profile calculated by EDLVO. Moreover, the adhesion forces of membrane–foulant and foulant–foulant were further measured by atomic force microscopy (AFM) with modified colloidal probes. A positive correlation (R2 =0.845) between particle detachment rate (determined by adhesion force) and defouling rate was developed for BSA and HA foulants that led to cake layer formation. By contrast, dextran defouling rate was off this correlation as dextran partially clogged membrane pores due to its smaller size. 
    more » « less
  3. Abstract

    Tangential flow filtration is advantageous for bioreactor clarification as the permeate stream could be introduced directly to the subsequent product capture step. However, membrane fouling coupled with high product rejection has limited its use. Here, the performance of a reverse asymmetric hollow fiber membrane where the more open pore structure faces the feed stream and the barrier layer faces the permeate stream has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of Chinese hamster ovary cell feed streams has been investigated under conditions that could be expected in fed batch operations. The performance of the reverse asymmetric membrane is compared to that of symmetric hollow fiber membranes with nominal pore sizes of 0.2 and 0.65 μm. Laser scanning confocal microscopy was used to observe the locations of particle entrapment. The throughput of the reverse asymmetric membrane is significantly greater than the symmetric membranes. The membrane stabilizes an internal high permeability cake that acts like a depth filter. This stabilized cake can remove particulate matter that would foul the barrier layer if it faced the feed stream. An empirical model has been developed to describe the variation of flux and transmembrane pressure drop during filtration using reverse asymmetric membranes. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor clarification.

     
    more » « less
  4. Abstract

    Virus filtration is a crucial step in ensuring the high levels of viral clearance required in the production of biotherapeutics produced in mammalian cells or derived from human plasma. Previous studies have reported that virus retention is often reduced in the presence of therapeutic proteins due to membrane fouling; however, the underlying mechanisms controlling this behavior are still not well understood. Experimental studies were performed with a single layer of the commercially available dual‐layer PegasusTMSV4 virus removal filter to more easily interpret the experimental results. Bacteriophage ФX174 was used as a model parvovirus, and human immunoglobulin (hIgG) and Bovine Serum Albumin (BSA) were used as model proteins. Data obtained with 5 g/L solutions of hIgG showed more than a 100‐fold reduction in virus retention compared to that in the protein‐free solution. Similar effects were seen with membranes that were pre‐fouled with hIgG and then challenged with ФX174. The experimental data were well‐described using an internal polarization model that accounts for virus capture and accumulation within the virus filter, with the hIgG nearly eliminating the irreversible virus capture while also facilitating the release of previously captured virus. These results provide important insights into the performance and validation of virus removal filters in bioprocessing.

     
    more » « less
  5. null (Ed.)
    We study the influence of a membrane filter's internal pore structure on its flow and adsorptive fouling behaviour. Membrane performance is measured via (1) comparison between volumetric flow rate and throughput during filtration and (2) control of concentration of foulants at membrane pore outlets. Taking both measures into account, we address the merits and drawbacks of selected membrane pore structures. We first model layered planar membrane structures with intra-layer pore connections, and present comparisons between non-connected and connected structures. Our model predicts that membrane filters with connected pore structures lead to higher total volumetric throughput than those with non-connected structures, over the filter lifetime. We also provide a sufficient criterion for the concentration of particles escaping the filter to achieve a maximum in time (indicative of a membrane filter whose particle retention capability can deteriorate). Additionally, we find that the influence of intra-layer heterogeneity in pore-size distribution on filter performance depends on the connectivity properties of the pores. 
    more » « less