skip to main content


Title: Competitively mediated changes in male toad calls can depend on call structure
Abstract

Males of many species aggregate in large groups where they signal to attract females. These large aggregations create intense competition for mates, and the simultaneous signaling by many individuals can impair any given male’s ability to attract females. In response to this situation, male signals can be modified, either evolutionarily or facultatively, such that the detectability of the signal is enhanced. The way in which signals are modified varies among even closely related species, yet few studies have evaluated what causes such variation. Here, we address this issue using male spadefoot toads (Spea multiplicata and Spea bombifrons), which call to attract females. Using data from natural populations, we examined if, and how, male calls of 3 different call types (S. multiplicata with a slow call, S. bombifrons with a slow call, and S. bombifrons with a fast call) varied depending on competition with other males. We found that in both call types consisting of slow calls, call pulse rate decreased with increasing competition. By contrast, in the call type consisting of fast calls, call rate decreased with increasing competition. Moreover, we found that the relationship between competition and male call effort—a measure of the energy that males expend in calling––differed between the call types. Such variation in male signals in response to competition can have important implications for explaining diversity in male signals and patterns of sexual selection.

 
more » « less
NSF-PAR ID:
10116742
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Behavioral Ecology
Volume:
30
Issue:
5
ISSN:
1045-2249
Page Range / eLocation ID:
p. 1344-1350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybridization—interbreeding between species—is generally thought to occur randomly between members of two species. Contrary to expectation, female plains spadefoot toads (Spea bombifrons) can increase their evolutionary fitness by preferentially mating with high-quality males of another species, the Mexican spadefoot toad (Spea multiplicata). Aspects of Mexican spadefoot males’ mating calls predict their hybrid offspring’s fitness, and plains spadefoot females prefer Mexican spadefoot males on the basis of these attributes, but only in populations and ecological conditions where hybridization is adaptive. By selecting fitness-enhancing mates of another species, females increase hybridization’s benefits and exert sexual selection across species. Nonrandom mating between species can thereby increase the potential for adaptive gene flow between species so that adaptive introgression is not simply happenstance.

     
    more » « less
  2. Abstract Researchers have long examined the structure of animal advertisement signals, but comparatively little is known about how often these signals are repeated and what factors predict variation in signaling rate across species. Here, we focus on acoustic advertisement signals to test the hypothesis that calling males experience a tradeoff between investment in the duration or complexity of individual calls and investment in signaling over long time periods. This hypothesis predicts that the number of signals that a male produces per 24 h will negatively correlate with (1) the duration of sound that is produced in each call (the sum of all pulses) and (2) the number of sound pulses per call. To test this hypothesis, we measured call parameters and the number of calls produced per 24 h in 16 species of sympatric phaneropterine katydids from the Panamanian rainforest. This assemblage also provided us with the opportunity to test a second taxonomically specific hypothesis about signaling rates in taxa such as phaneropterine katydids that transition from advertisement calls to mating duets to facilitate mate localization. To establish duets, male phaneropterine katydids call and females produce a short acoustic reply. These duets facilitate searching by males, females, or both sexes, depending on the species. We test the hypothesis that males invest either in calling or in searching for females. This hypothesis predicts a negative relationship between how often males signal over 24 h and how much males move across the landscape relative to females. For the first hypothesis, there was a strong negative relationship between the number of signals and the duration of sound that is produced in each signal, but we find no relationship between the number of signals produced per 24 h and the number of pulses per signal. This result suggests the presence of cross-taxa tradeoffs that limit signal production and duration, but not the structure of individual signals. These tradeoffs could be driven by energetic limitations, predation pressure, signal efficacy, or other signaling costs. For the second hypothesis, we find a negative relationship between the number of signals produced per day and proportion of the light trap catch that is male, likely reflecting males investing either in calling or in searching. These cross-taxa relationships point to the presence of pervasive trade-offs that fundamentally shape the spatial and temporal dynamics of communication. 
    more » « less
  3. Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of maleXenopus laevis,using an ex vivo preparation that produces fictive vocalizations.Here, we extended this approach to four additional species,X. amieti, X. cliivi, X. petersii, and X. tropicalis,by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genusXenopushave evolved by utilizing conserved slow and/or fast CPGs inherited by each species.

     
    more » « less
  4. Mating with another species is often maladaptive because it generally results in no or low-fitness offspring. When hybridization is sufficiently costly, individuals should avoid mating with heterospecifics even if it reduces their ability to mate with high-quality conspecifics that resemble heterospecifics. Here, we used spadefoot toads, Spea multiplicata, to evaluate whether females alter their preferences for conspecific male sexual signals (call rate) depending on heterospecific presence. When presented with conspecific signals against a background including both conspecific and heterospecific signals, females preferred male traits that were most dissimilar to heterospecifics—even though these signals are potentially associated with lower-quality mates. However, when these same females were presented with a background that included only conspecific signals, some females switched their preferences, choosing conspecific signals that were exaggerated and indicative of high-quality conspecific mates. Because only some females switched their preferences between these two chorus treatments, there was no population-level preference for exaggerated conspecific male signals in the absence of heterospecifics. These results show that hybridization risk can alter patterns of mate choice and, consequently, sexual selection on male signals. Moreover, they emphasize that the strength and expression of reproductive barriers between species (such as mate choice) can be context-dependent. 
    more » « less
  5. Synopsis Adrenal glucocorticoids (GCs) are increasingly recognized as important modulators of male courtship signals, suggesting that circulating levels of these steroids can play a central role in sexual selection. However, few studies have examined whether GC-mediated effects on male sexual signals actually impact mate choice by females. Here, we examine how corticosterone (CORT)-mediated changes in the vocalizations of male green treefrogs, Dryophytes cinereus, influence attractiveness to females. In this species, agonistic acoustic signaling between rival males competing for mates increases circulating CORT levels in contest losers. Acute elevations in CORT, in turn, decrease the duration of male advertisement calls and increase the latency between successive calls, resulting in a net reduction in vocal effort (the amount of signaling per unit time) that occurs independently of changes in circulating androgens. Based on known preferences for acoustic features in D. cinereus, and other anuran species, the direction of CORT-mediated effects on temporal call characteristics is expected to compromise attractiveness to females, but whether they are of sufficient magnitude to impact female mate choice decisions is unclear. To examine whether CORT-mediated effects on male advertisement calls reduce attractiveness to females, we broadcast vocalizations in dual speaker playback experiments approximating the mean and 1 SD above and below the mean call duration and vocal effort values (the two primary vocal features impacted by elevated CORT) of males with low and high CORT levels. Results revealed strong preferences by females for the calls characteristic of males with low CORT in tests using the approximate mean and 1 SD above the mean call duration and vocal effort values, but females did not show a preference for calls of males with low CORT in trials using call values approximating 1 SD below the mean. Overall, females preferred males with signal traits predictive of low CORT, however this effect was nonlinear with attenuated preferences when signal alternatives differed only marginally indicating a possible thresholding effect. Specifically, females appeared to discriminate between males with low versus high CORT based primarily on differences in call rates associated with CORT-mediated changes in call duration and vocal effort. Our results highlight that changes in circulating CORT during male–male vocal interactions can decrease attractiveness to females, suggesting that circulating levels of CORT can play a critical role in both intra- and intersexual selection. 
    more » « less