skip to main content

Title: Surface Control of the Frequency of Stratospheric Sudden Warming Events

The frequency of stratospheric sudden warming events (SSWs) is an important characteristic of the coupled stratosphere–troposphere system. However, many modern climate models are unable to reproduce the observed SSW frequency. A previous study suggested that one of the reasons could be the momentum damping at the surface. The goal of the present study is to understand what determines the climatological SSW frequency and how the surface damping comes into play. To this end, we conduct a parameter sweep with an idealized model, using a wide range of values for the surface damping. It is found that the SSW frequency is a strong and nonlinear function of the surface damping. Various tropospheric and stratospheric factors are identified to link the surface damping to the SSW frequency. The factors include the magnitude of the surface winds, the meridional and vertical wind shear, the synoptic eddy activity in the troposphere, the transient wave activity flux at the lower stratosphere, and the strength of the stratospheric polar vortex. Mathematical–statistical modeling, informed by the parameter sweep, is used to quantify how the different factors relate to each other. This successfully reproduces the complex variations of the SSW frequency with the surface damping seen in the parameter sweep. The results may help in explaining some of the difficulties that climate models have in simulating the observed SSW frequency.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
p. 4753-4766
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The atmospheric response to Arctic sea ice loss remains a subject of much debate. Most studies have focused on the sea ice retreat in the Barents-Kara Seas and its troposphere-stratosphere influence. Here, we investigate the impact of large sea ice loss over the Chukchi-Bering Seas on the sudden stratospheric warming (SSW) phenomenon during the easterly phase of the Quasi-Biennial Oscillation through idealized large-ensemble experiments based on a global atmospheric model with a well-resolved stratosphere. Although culminating in autumn, the prescribed sea ice loss induces near-surface warming that persists into winter and deepens as the SSW develops. The resulting temperature contrasts foster a deep cyclonic circulation over the North Pacific, which elicits a strong upward wavenumber-2 activity into the stratosphere, reinforcing the climatological planetary wave pattern. While not affecting the SSW occurrence frequency, the amplified wave forcing in the stratosphere significantly increases the SSW duration and intensity, enhancing cold air outbreaks over the continents afterward.

    more » « less
  2. Abstract

    Extreme stratospheric wave activity has been suggested to be connected to surface temperature anomalies, but some key processes are not well understood. Using observations, we show that the stratospheric events featuring weaker‐than‐normal wave activity are associated with increased North American (NA) cold extreme risks before and near the event onset, accompanied by less frequent atmospheric river (AR) events on the west coast of the United States. Strong stratospheric wave events, on the other hand, exhibit a tropospheric weather regime transition. They are preceded by NA warm anomalies and increased AR frequency over the west coast, followed by increased risks of NA cold extremes and north‐shifted ARs over the Atlantic. Moreover, these links between the stratosphere and troposphere are attributed to the vertical structure of wave coupling. Weak wave events show a wave structure of westward tilt with increasing altitudes, while strong wave events feature a shift from westward tilt to eastward tilt during their life cycle. This wave phase shift indicates vertical wave coupling and likely regional planetary wave reflection. Further examinations of CMIP6 models show that models with a degraded representation of stratospheric wave structure exhibit biases in the troposphere during strong wave events. Specifically, models with a stratospheric ridge weaker than the reanalysis exhibit a weaker tropospheric signal. Our findings suggest that the vertical coupling of extreme stratospheric wave activity should be evaluated in the model representation of stratosphere‐troposphere coupling.

    more » « less
  3. Abstract

    This work explores dynamical arguments for statistical prediction of stratospheric sudden warming events (SSWs). Based on climate model output, it focuses on two predictors, upward wave activity in the lower stratosphere and meridional potential vorticity gradient in the upper stratosphere, and detects large values of these predictors. Then it quantifies how many SSWs are preceded by predictor events and, inversely, how many events are followed by SSWs. This allows to compute conditional probabilities of future SSW occurrence. It is found that upward wave activity leads to important increases in SSW probability within the following 3 weeks but is less important thereafter. A weak potential vorticity gradient is associated with increased SSW probability at short lags and, perhaps more importantly, decreased SSW probability at long lags. Finally, when both predictors are considered in combination, the information gain is large on the weekly and small but significant on the intraseasonal time scale.

    more » « less
  4. Abstract

    Recent observational studies have shown that stratospheric air rich in ozone (O3) is capable of being transported into the upper troposphere in association with tropopause‐penetrating convection (anvil wrapping). This finding challenges the current understanding of upper tropospheric sources of O3, which is traditionally thought to come from thunderstorm outflows where lightning‐generated nitrogen oxides facilitate O3formation. Since tropospheric O3is an important greenhouse gas and the frequency and strength of tropopause‐penetrating storms may change in a changing climate, it is important to understand the mechanisms driving this transport process so that it can be better represented in chemistry‐climate models. Simulations of a mesoscale convective system (MCS) around which this transport process was observed are performed using the Weather Research and Forecasting model coupled with Chemistry. The Weather Research and Forecasting model coupled with Chemistry model adequately simulates anvil wrapping of ozone‐rich air. Possible mechanisms that influence the transport, including small‐scale static and dynamic instabilities and MCS‐induced mesoscale circulations, are evaluated. Model results suggest that anvil wrapping is a two‐step transport process (1) compensating subsidence surrounding the MCS, which is driven by mass conservation as the MCS transports tropospheric air into the upper troposphere and lower stratosphere, followed by (2) differential advection beneath the core of the MCS upper‐tropospheric outflow jet which wraps high O3air around and under the MCS cloud anvil. Static and dynamic instabilities are not a leading contributor to this transport process. Continued fine‐scale modeling of these events is needed to fully represent the stratosphere‐to‐troposphere transport process.

    more » « less
  5. Abstract

    Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2(4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling.

    more » « less