skip to main content


Title: An Ecologist’s Guide to Mitochondrial DNA Mutations and Senescence
Abstract

Longevity plays a key role in the fitness of organisms, so understanding the processes that underlie variance in senescence has long been a focus of ecologists and evolutionary biologists. For decades, the performance and ultimate decline of mitochondria have been implicated in the demise of somatic tissue, but exactly why mitochondrial function declines as individual’s age has remained elusive. A possible source of decline that has been of intense debate is mutations to the mitochondrial DNA. There are two primary sources of such mutations: oxidative damage, which is widely discussed by ecologists interested in aging, and mitochondrial replication error, which is less familiar to most ecologists. The goal of this review is to introduce ecologists and evolutionary biologists to the concept of mitochondrial replication error and to review the current status of research on the relative importance of replication error in senescence. We conclude by detailing some of the gaps in our knowledge that currently make it difficult to deduce the relative importance of replication error in wild populations and encourage organismal biologists to consider this variable both when interpreting their results and as viable measure to include in their studies.

 
more » « less
Award ID(s):
1754152 1736150 1453784
NSF-PAR ID:
10116831
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
p. 970-982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mitochondrial genome in different tissues throughout ageing. We used ultrasensitive duplex sequencing to profile ~2.5 million mitochondrial genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloguing ~1.2 million mitochondrial somatic and ultralow-frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the light strand origin of replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared with primates with a surfeit of reactive oxygen species-associated G > T/C > A mutations, and that somatic mutations in protein-coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that ‘re-align’ mito-nuclear ancestry within an organism’s lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.

     
    more » « less
  2. Abstract

    For aging to evolve, selection against mortality must decrease with age. This prevailing view in the evolutionary theory of senescence posits that mutations with deleterious effects happening late in life—when purging selection is weak—may become fixed via genetic drift in the germline, and produce a senescent phenotype. Theory, however, has focused primarily on growing populations and the fate of single deleterious mutations. In a mathematical model, we demonstrate that relaxing both of these simplifying assumptions leads to unrealistic outcomes. In density-regulated populations, previously fixed deleterious mutations should promote the fixation of other deleterious mutations that lead to senescence at ever younger ages, until death necessarily occurs at sexual maturity. This sequential fixation of deleterious mutations is not promoted by a decrease in population size, but is due to a change in the strength of selection. In an individual-based model, we also show that such evolutionary dynamics should lead to the extinction of most populations. Our models therefore make rather unrealistic predictions, underlining the need for a reappraisal of current theories. In this respect, we have further assumed in our models that the deleterious effects of mutations can only occur at certain ages, marked, for instance, by somatic or physiological changes. Under this condition, we show that the catastrophic accumulation of deleterious mutations in the germline can stop. This new finding emphasizes the importance of investigating somatic factors, as well as other mechanisms underlying the deleterious effects of mutations, to understand senescence evolution. More generally, our model therefore establishes that patterns of senescence in nature depend not only on the decrease in selection strength with age but also on any mechanism that stops the catastrophic accumulation of mutations.

     
    more » « less
  3. null (Ed.)
    An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools. 
    more » « less
  4. Abstract

    Senescence vividly marks the onset of the final stages of the life of a leaf, yet the triggers and drivers of this process are still not fully understood. The hormone abscisic acid (ABA) is an important regulator of leaf senescence in model herbs, but the function of this hormone has not been widely tested in deciduous trees. Here we investigate the importance of ABA as a driver of leaf senescence in winter deciduous trees. In four diverse species we tracked leaf gas exchange, water potential, chlorophyll content, and leaf ABA levels from the end of summer until leaves were abscised or died. We found that no change in ABA levels occurred at the onset of chlorophyll decline or throughout the duration of leaf senescence. To test whether ABA could enhance leaf senescence, we girdled branches to disrupt ABA export in the phloem. Girdling increased leaf ABA levels in two of the species, and this increase triggered an accelerated rate of chlorophyll decline in these species. We conclude that an increase in ABA level may augment leaf senescence in winter deciduous species but that it is not essential for this annual process.

     
    more » « less
  5. Surtees, J A (Ed.)
    Abstract Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation. 
    more » « less