skip to main content


Title: Space‐Confined Seeded Growth of Cu Nanorods with Strong Surface Plasmon Resonance for Photothermal Actuation
Abstract

Herein, we show that copper nanostructures, if made anisotropic, can exhibit strong surface plasmon resonance comparable to that of gold and silver counterparts in the near‐infrared spectrum. Further, we demonstrate that a robust confined seeded growth strategy allows the production of high‐quality samples with excellent control over their size, morphology, and plasmon resonance frequency. As an example, copper nanorods (CuNRs) are successfully grown in a limited space of preformed rod‐shaped polymer nanocapsules, thereby avoiding the complex nucleation kinetics involved in the conventional synthesis. The method is unique in that it enables the flexible control and fine‐tuning of the aspect ratio and the plasmonic resonance. We also show the high efficiency and stability of the as‐synthesized CuNRs in photothermal conversion and demonstrate their incorporation into nanocomposite polymer films that can be used as active components for constructing light‐responsive actuators and microrobots.

 
more » « less
Award ID(s):
1808788
NSF-PAR ID:
10117026
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
27
ISSN:
1433-7851
Page Range / eLocation ID:
p. 9275-9281
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herein, we show that copper nanostructures, if made anisotropic, can exhibit strong surface plasmon resonance comparable to that of gold and silver counterparts in the near‐infrared spectrum. Further, we demonstrate that a robust confined seeded growth strategy allows the production of high‐quality samples with excellent control over their size, morphology, and plasmon resonance frequency. As an example, copper nanorods (CuNRs) are successfully grown in a limited space of preformed rod‐shaped polymer nanocapsules, thereby avoiding the complex nucleation kinetics involved in the conventional synthesis. The method is unique in that it enables the flexible control and fine‐tuning of the aspect ratio and the plasmonic resonance. We also show the high efficiency and stability of the as‐synthesized CuNRs in photothermal conversion and demonstrate their incorporation into nanocomposite polymer films that can be used as active components for constructing light‐responsive actuators and microrobots.

     
    more » « less
  2. Abstract

    The intercalation of layered compounds opens up a vast space of new host–guest hybrids, providing new routes for tuning the properties of materials. Here, it is shown that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS2resulting in a unique Cu–MoS2hybrid. The new Cu–MoS2hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ≈1eV, giving rise to enhanced optoelectronic activity. Compared with high‐performance MoS2photodetectors, copper‐enhanced devices are superior in their spectral response, which extends into the infrared, and also in their total responsivity, which exceeds 104A W−1. The Cu–MoS2hybrids hold promise for supplanting current night‐vision technology with compact, advanced multicolor night vision.

     
    more » « less
  3. Abstract Fucosylated chondroitin sulfate (FucCS) is a unique marine glycosaminoglycan that exhibits diverse biological functions, including antiviral and anticoagulant activity. In previous work, the FucCS derived from Pentacta pygmaea (PpFucCS) showed moderate anticoagulant effect but high inhibitory activity against the Wuhan strain of severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this study, we perform free-radical depolymerization of PpFucCS by the copper-based Fenton method to generate low molecular weight (MW) oligosaccharides. PpFucCS oligosaccharides were structurally analyzed by 1H nuclear magnetic resonance spectroscopy and were used to conduct structure–activity relationship studies regarding their effects against SARS-CoV-2 and clotting. Anticoagulant properties were measured by activated partial thromboplastin time, protease (factors Xa and IIa) inhibition by serine protease inhibitors (antithrombin [AT] and heparin cofactor II [HCII]), and competitive surface plasmon resonance (SPR) assay using AT, HCII, and IIa. Anti-SARS-CoV-2 properties were measured by the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 Delta variant spike (S)-protein and competitive SPR assays using multiple S-proteins (Wuhan, N501Y [Alpha], K417T/E484K/N501Y [Gamma], L542R [Delta], and Omicron [BA.2 subvariant]). Cytotoxicity of native PpFucCS and oligosaccharides was also assessed. The PpFucCS-derived oligosaccharide fraction of the highest MW showed great anti-SARS-CoV-2 Delta activity and reduced anticoagulant properties. Results have indicated no cytotoxicity and MW dependency on both anti-SARS-CoV-2 and anticoagulant effects of PpFucCS, as both actions were reduced accordingly to the MW decrease of PpFucCS. Our results demonstrate that the high-MW structures of PpFucCS is a key structural element to achieve the maximal anti-SARS-CoV-2 and anticoagulant effects. 
    more » « less
  4. Electrochemically deposited copper nanostructures were coated with silver to create a plasmonically active cathode for carbon dioxide (CO 2 ) reduction. Illumination with 365 nm light, close to the peak plasmon resonance of silver, selectively enhanced 5 of the 14 typically observed copper CO 2 reduction products while simultaneously suppressing hydrogen evolution. At low overpotentials, carbon monoxide was promoted in the light and at high overpotentials ethylene, methane, formate, and allyl alcohol were enhanced upon illumination; generally C 1 products and C 2 /C 3 products containing a double carbon bond were selectively promoted under illumination. Temperature-dependent product analysis in the dark showed that local heating is not the cause of these selectivity changes. While the exact plasmonic mechanism is still unknown, these results demonstrate the potential for enhancing CO 2 reduction selectivity at copper electrodes using plasmonics. 
    more » « less
  5. Abstract

    In recent decades, extensive studies have been devoted to assembling nanoparticles (NPs) into various ordered structures to achieve novel optical properties. However, it still remains a challenging task to assemble NPs into cyclic one‐dimensional (1D) shapes, such as rings and frames. Herein, we report a directed assembly method to precisely assemble NPs into well‐defined, free‐standing frames using polymer single crystals (PSCs) as the template. Preformed poly(ethylene oxide) (PEO) single crystals were used as the template to direct the crystallization of block copolymer (BCP) poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) (PEO‐b‐P4VP), which directs the gold NPs (AuNPs) to form AuNP frames. By controlling the PSC growth, we were able to, for the first time, precisely tune both the size and width of the AuNP frame. These novel AuNP frames topologically resemble NP nanorings and cyclic polymer chains, and show unique surface plasmon resonance (SPR) behaviors.

     
    more » « less