skip to main content


Title: Cycle-Complete Ramsey Numbers
Abstract

The Ramsey number $r(C_{\ell },K_n)$ is the smallest natural number $N$ such that every red/blue edge colouring of a clique of order $N$ contains a red cycle of length $\ell $ or a blue clique of order $n$. In 1978, Erd̋s, Faudree, Rousseau, and Schelp conjectured that $r(C_{\ell },K_n) = (\ell -1)(n-1)+1$ for $\ell \geq n\geq 3$ provided $(\ell ,n) \neq (3,3)$. We prove that, for some absolute constant $C\ge 1$, we have $r(C_{\ell },K_n) = (\ell -1)(n-1)+1$ provided $\ell \geq C\frac{\log n}{\log \log n}$. Up to the value of $C$ this is tight since we also show that, for any $\varepsilon>0$ and $n> n_0(\varepsilon )$, we have $r(C_{\ell }, K_n) \gg (\ell -1)(n-1)+1$ for all $3 \leq \ell \leq (1-\varepsilon )\frac{\log n}{\log \log n}$. This proves the conjecture of Erd̋s, Faudree, Rousseau, and Schelp for large $\ell $, a stronger form of the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions of Erd̋s, Faudree, Rousseau, and Schelp.

 
more » « less
NSF-PAR ID:
10117032
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n-1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n-1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n-2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$, a subsequence $\{a_{d_m}\}_{m\in \mathbb{N}}$ and homogeneous polynomials $\{p_{m}\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $b_k$ denotes the $k$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $\Gamma$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $d$, of the set $\Sigma _{d_m,a, \Gamma }$ of polynomials verifying (0.1) is positive, but there exists a constant $c_\Gamma$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $a$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $\Gamma$, for most polynomials a Bézout-type bound holds for the intersection $\Gamma \cap Z(p)$: for every $0\leq k\leq n-2$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$

     
    more » « less
  2. Abstract

    Let $f(z) = \sum_{n=1}^\infty a_f(n)q^n$ be a holomorphic cuspidal newform with even integral weight $k\geq 2$, level N, trivial nebentypus and no complex multiplication. For all primes p, we may define $\theta_p\in [0,\pi]$ such that $a_f(p) = 2p^{(k-1)/2}\cos \theta_p$. The Sato–Tate conjecture states that the angles θp are equidistributed with respect to the probability measure $\mu_{\textrm{ST}}(I) = \frac{2}{\pi}\int_I \sin^2 \theta \; d\theta$, where $I\subseteq [0,\pi]$. Using recent results on the automorphy of symmetric power L-functions due to Newton and Thorne, we explicitly bound the error term in the Sato–Tate conjecture when f corresponds to an elliptic curve over $\mathbb{Q}$ of arbitrary conductor or when f has square-free level. In these cases, if $\pi_{f,I}(x) := \#\{p \leq x : p \nmid N, \theta_p\in I\}$ and $\pi(x) := \# \{p \leq x \}$, we prove the following bound: $$ \left| \frac{\pi_{f,I}(x)}{\pi(x)} - \mu_{\textrm{ST}}(I)\right| \leq 58.1\frac{\log((k-1)N \log{x})}{\sqrt{\log{x}}} \qquad \text{for} \quad x \geq 3. $$ As an application, we give an explicit bound for the number of primes up to x that violate the Atkin–Serre conjecture for f.

     
    more » « less
  3. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  4. Abstract

    Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.

     
    more » « less
  5. Let(R,m)(R,\mathfrak {m})be a Noetherian local ring of dimensiond≥<#comment/>2d\geq 2. We prove that ife(R^<#comment/>red)>1e(\widehat {R}_{red})>1, then the classical Lech’s inequality can be improved uniformly for allm\mathfrak {m}-primary ideals, that is, there existsε<#comment/>>0\varepsilon >0such thate(I)≤<#comment/>d!(e(R)−<#comment/>ε<#comment/>)ℓ<#comment/>(R/I)e(I)\leq d!(e(R)-\varepsilon )\ell (R/I)for allm\mathfrak {m}-primary idealsI⊆<#comment/>RI\subseteq R. This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators ofII.

     
    more » « less