skip to main content


Title: Platinum Alloy Catalysts for Oxygen Reduction Reaction: Advances, Challenges and Perspectives
Abstract

One of the challenges in polymer electrolyte membrane fuel cells (PEMFCs) is developing cost‐effective, active and stable catalyst for oxygen reduction reaction (ORR). Platinum alloy‐based catalyst materials have drawn great attention and been intensively investigated for the excellent activity property, with some of them already exceeding 2020 DOE target for the ORR activity. In the meantime, the electrochemical stability of these Pt alloys remains a challenge to be overcome. This review first highlights important understandings of ORR pathways and mechanisms and then proceeds to summarize recent research progresses on development of Pt alloy catalyst materials. Current obstacles in Pt alloy catalyst research are discussed, with the stability issue being specifically emphasized and a theoretical model being developed for depicting the stability property. This review also provides perspectives of future research directions in this field.

 
more » « less
Award ID(s):
1665265
NSF-PAR ID:
10117407
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
6
Issue:
1
ISSN:
2199-692X
Page Range / eLocation ID:
p. 32-41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically orderedL10‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoOxprecursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering ofL10‐Pt–Ni NPs. As a result, the best‐performing carbon supportedL10‐PtNi0.8Co0.2catalyst reveals a half‐wave potential (E1/2) of 0.951 V versus reversible hydrogen electrode in 0.1mHClO4with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that theL10‐PtNi0.8Co0.2core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.

     
    more » « less
  2. Abstract

    The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt‐alloy with a Pt‐skin. The synthesis of ultrasmall and ordered L10‐PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10‐W‐PtCo/C catalyst shows significant improvement in both initial activity and high‐temperature stability. The L10‐W‐PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt‐Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface.

     
    more » « less
  3. Abstract

    The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt‐alloy with a Pt‐skin. The synthesis of ultrasmall and ordered L10‐PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10‐W‐PtCo/C catalyst shows significant improvement in both initial activity and high‐temperature stability. The L10‐W‐PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt‐Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface.

     
    more » « less
  4. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  5. Abstract

    The harsh working environments of proton exchange membrane fuel cells (PEMFCs) pose huge challenges to the stability of Pt‐based alloy catalysts. The widespread presence of metallic bonds with significantly delocalized electron distribution often lead to component segregation and rapid performance decay. Here we report L10−Pt2CuGa intermetallic nanoparticles with a unique covalent atomic interaction between Pt−Ga as high‐performance PEMFC cathode catalysts. The L10−Pt2CuGa/C catalyst shows superb oxygen reduction reaction (ORR) activity and stability in fuel cell cathode (mass activity=0.57 A mgPt−1at 0.9 V, peak power density=2.60/1.24 W cm−2in H2‐O2/air, 28 mV voltage loss at 0.8 A cm−2after 30 000 cycles). Theoretical calculations reveal the optimized adsorption of oxygen intermediates via the formed biaxial strain on L10−Pt2CuGa surface, and the durability enhancement stems from the stronger Pt−M bonds than those in L11−PtCu resulted from Pt−Ga covalent interactions.

     
    more » « less