skip to main content


Title: The whole picture of the large-scale structure of the CL1604 supercluster at z ∼ 0.9
Abstract

We present the large-scale structure over a more than 50 comoving Mpc scale at $z \sim 0.9$ where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with the Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total via follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure known as the CL1604 supercluster is the tip of the iceberg. We investigate the stellar population of the red-sequence galaxies using 4000 Å break and Balmer H$\delta$ absorption lines. Almost all of the red-sequence galaxies brighter than $21.5\:$mag in the z band show an old stellar population of $\gtrsim\! 2\:$Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have a similar stellar population age, even if they are located $\sim\! 50\:$Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure on a 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.

 
more » « less
NSF-PAR ID:
10117429
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
71
Issue:
6
ISSN:
0004-6264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    This paper reports our discovery of the most massive supercluster, termed the King Ghidorah Supercluster (KGSc), at z = 0.50–0.64 in the Third Public Data Release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP PDR3) over 690 deg2, as well as an initial result for a galaxy and dark matter mapping. The primary structure of the KGSc comprises triple broad weak-lensing (WL) peaks over 70 comoving Mpc. Such extensive WL detection at z > 0.5 can only currently be achieved using the wide-field high-quality images produced by the HSC-SSP. The structure is also contiguous with multiple large-scale structures across a ∼400 comoving Mpc scale. The entire field has a notable overdensity (δ = 14.7 ± 4.5) of red-sequence clusters. Additionally, large-scale underdensities can be found in the foreground along the line of sight. We confirmed the overdensities in stellar mass and dark matter distributions to be tightly coupled and estimated the total mass of the main structure to be 1 × 1016 solar masses, according to the mock data analyses based on large-volume cosmological simulations. Further, upcoming wide-field multi-object spectrographs such as the Subaru Prime Focus Spectrograph may aid in providing additional insights into distant superclusters beyond the 100 Mpc scale.

     
    more » « less
  2. Abstract

    We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes and their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at a much higher pace at $z \sim 6$ than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at $z \sim 6$, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.

     
    more » « less
  3. ABSTRACT

    Radial colour gradients within galaxies arise from gradients of stellar age, metallicity, and dust reddening. Large samples of colour gradients from wide-area imaging surveys can complement smaller integral-field spectroscopy data sets and can be used to constrain galaxy formation models. Here, we measure colour gradients for low-redshift galaxies (z < 0.1) using photometry from the DESI Legacy Imaging Survey DR9. Our sample comprises ∼93 000 galaxies with spectroscopic redshifts and ∼574 000 galaxies with photometric redshifts. We focus on gradients across a radial range 0.5Reff to Reff, which corresponds to the inner disc of typical late-type systems at low redshift. This region has been the focus of previous statistical studies of colour gradients and has recently been explored by spectroscopic surveys such as MaNGA. We find that the colour gradients of most galaxies in our sample are negative (redder towards the centre), consistent with the literature. We investigate empirical relationships between colour gradient, average g − r and r − z colour, Mr, M⋆, and sSFR. Trends of gradient strength with Mr (M⋆) show an inflection around Mr ∼ −21 ($\log _{10} \, M_\star /\mathrm{M_\odot }\sim 10.5$). Below this mass, colour gradients become steeper with increasing M⋆, whereas colour gradients in more massive galaxies become shallower. We find that positive gradients (bluer stars at smaller radii) are typical for galaxies of $M_{\star }\sim 10^{8}\, \mathrm{M_\odot }$. We compare our results to age and metallicity gradients in two data sets derived from fits of different stellar population libraries to MaNGA spectra, but find no clear consensus explanation for the trends we observe. Both MaNGA data sets seem to imply a significant contribution from dust reddening, in particular, to explain the flatness of colour gradients along the red sequence.

     
    more » « less
  4. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

     
    more » « less
  5. Abstract Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel’dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t 50 ) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t 50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log 10 ( M /10 11 M ⊙ )) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass. 
    more » « less