skip to main content


Title: New algorithms for detecting multi-effect and multi-way epistatic interactions
Abstract Motivation

Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics.

Results

The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods.

Availability and implementation

Data source was publicly available and details are provided in the text.

 
more » « less
NSF-PAR ID:
10117571
Author(s) / Creator(s):
; ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Skyline queries are used to find the Pareto optimal solution from datasets containing multi-dimensional data points. In this paper, we propose a new type of skyline queries whose evaluation is constrained by a multi-cost transportation network (MCTN) and whose answers are off the network. This type of skyline queries is useful in many applications. For example, a person wants to find an apartment by considering not only the price and the surrounding area of the apartment, but also the transportation cost, time, and distance between the apartment and his/her work place. Most existing works that evaluate skyline queries on multi-cost networks (MCNs), which are either MCTNs or road networks, find interesting objects that locate on edges of the networks. Formally, our new type of skyline queries takes as input an MCTN, a query point q, and a set of objects of interest D with spatial information, where q and the objects in D are off the network. The answers to such queries are objects in D that are not dominated by other D objects when considering the multiple attributes of these objects and the multiple network cost from q to the solution objects. To evaluate such queries, we propose an exact search algorithm and its improved version by implementing several properties. The space of the exact skyline solutions is huge and can easily reach the order of thousands and incur long evaluation time. We further design much more efficient heuristic methods to find approximate solutions. We run extensive experiments using both real and synthetic datasets to test the effectiveness and efficiency of our proposed approaches. The results show that the exact search algorithm can be dramatically improved by utilizing several properties. The heuristic approaches to find approximate answers can largely reduce the query time and retrieve results that are comparable to the exact solutions. 
    more » « less
  2. Abstract Motivation

    Multistate protein design addresses real-world challenges, such as multi-specificity design and backbone flexibility, by considering both positive and negative protein states with an ensemble of substates for each. It also presents an enormous challenge to exact algorithms that guarantee the optimal solutions and enable a direct test of mechanistic hypotheses behind models. However, efficient exact algorithms are lacking for multistate protein design.

    Results

    We have developed an efficient exact algorithm called interconnected cost function networks (iCFN) for multistate protein design. Its generic formulation allows for a wide array of applications such as stability, affinity and specificity designs while addressing concerns such as global flexibility of protein backbones. iCFN treats each substate design as a weighted constraint satisfaction problem (WCSP) modeled through a CFN; and it solves the coupled WCSPs using novel bounds and a depth-first branch-and-bound search over a tree structure of sequences, substates, and conformations. When iCFN is applied to specificity design of a T-cell receptor, a problem of unprecedented size to exact methods, it drastically reduces search space and running time to make the problem tractable. Moreover, iCFN generates experimentally-agreeing receptor designs with improved accuracy compared with state-of-the-art methods, highlights the importance of modeling backbone flexibility in protein design, and reveals molecular mechanisms underlying binding specificity.

    Availability and implementation

    https://shen-lab.github.io/software/iCFN

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Stencil kernel is an important type of kernel used extensively in many application domains. Over the years, researchers have been studying the optimizations on parallelization, communication reuse, and computation reuse for various target platforms. However, challenges still exist, especially on the computation reuse problem for accelerators, due to the lack of complete design-space exploration and effective design-space pruning. In this paper, we present solutions to the above challenges for a wide range of stencil kernels (i.e., stencil with reduction operations), where the computation reuse patterns are extremely flexible due to the commutative and associative properties. We formally define the complete design space, based on which we present a provably optimal dynamic programming algorithm and a heuristic beam search algorithm that provides near-optimal solutions under an architecture-aware model. Experimental results show that for synthesizing stencil kernels to FPGAs, compared with state-of-the-art stencil compiler without computation reuse capability, our proposed algorithm can reduce the look-up table (LUT) and digital signal processor (DSP) usage by 58.1% and 54.6% on average respectively, which leads to an average speedup of 2.3× for compute-intensive kernels, outperforming the latest CPU/GPU results. 
    more » « less
  4. Abstract Motivation

    Cancer phylogenies are key to studying tumorigenesis and have clinical implications. Due to the heterogeneous nature of cancer and limitations in current sequencing technology, current cancer phylogeny inference methods identify a large solution space of plausible phylogenies. To facilitate further downstream analyses, methods that accurately summarize such a set T of cancer phylogenies are imperative. However, current summary methods are limited to a single consensus tree or graph and may miss important topological features that are present in different subsets of candidate trees.

    Results

    We introduce the Multiple Consensus Tree (MCT) problem to simultaneously cluster T and infer a consensus tree for each cluster. We show that MCT is NP-hard, and present an exact algorithm based on mixed integer linear programming (MILP). In addition, we introduce a heuristic algorithm that efficiently identifies high-quality consensus trees, recovering all optimal solutions identified by the MILP in simulated data at a fraction of the time. We demonstrate the applicability of our methods on both simulated and real data, showing that our approach selects the number of clusters depending on the complexity of the solution space T.

    Availability and implementation

    https://github.com/elkebir-group/MCT.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Proteoform identification is an important problem in proteomics. The main task is to find a modified protein that best fits the input spectrum. To overcome the combinatorial explosion of possible proteoforms, the proteoform mass graph and spectrum mass graph are used to represent the protein database and the spectrum, respectively. The problem becomes finding an optimal alignment between the proteoform mass graph and the spectrum mass graph. Peak error correction is an important issue for computing an optimal alignment between the two input mass graphs.

    Results

    We propose a faster algorithm for the error correction alignment of spectrum mass graph and proteoform mass graph problem and produce a program package TopMGFast. The newly designed algorithms require less space and running time so that we are able to compute global optimal alignments for the two input mass graphs in a reasonable time. For the local alignment version, experiments show that the running time of the new algorithm is reduced by 2.5 times. For the global alignment version, experiments show that the maximum mass errors between any pair of matched nodes in the alignments obtained by our method are within a small range as designed, while the alignments produced by the state-of-the-art method, TopMG, have very large maximum mass errors for many cases. The obtained alignment sizes are roughly the same for both TopMG and TopMGFast. Of course, TopMGFast needs more running time than TopMG. Therefore, our new algorithm can obtain more reliable global alignments within a reasonable time. This is the first time that global optimal error correction alignments can be obtained using real datasets.

    Availability and implementation

    The source code of the algorithm is available at https://github.com/Zeirdo/TopMGFast.

     
    more » « less