skip to main content


Title: Assessing the Quality of Southern Ocean Circulation in CMIP5 AOGCM and Earth System Model Simulations
Abstract

The Southern Ocean (SO) is vital to Earth’s climate system due to its dominant role in exchanging carbon and heat between the ocean and atmosphere and transforming water masses. Evaluating the ability of fully coupled climate models to accurately simulate SO circulation and properties is crucial for building confidence in model projections and advancing model fidelity. By analyzing multiple biases collectively across large model ensembles, physical mechanisms governing the diverse mean-state SO circulation found across models can be identified. This analysis 1) assesses the ability of a large ensemble of models contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate observationally based metrics associated with an accurate representation of the Antarctic Circumpolar Current (ACC), and 2) presents a framework by which the quality of the simulation can be categorized and mechanisms governing the resulting circulation can be deduced. Different combinations of biases in critical metrics including the magnitude and position of the zonally averaged westerly wind stress maximum, wind-driven surface divergence, surface buoyancy fluxes, and properties and transport of North Atlantic Deep Water entering the SO produce distinct mean-state ACC transports. Relative to CMIP3, the quality of the CMIP5 SO simulations has improved. Eight of the thirty-one models simulate an ACC within observational uncertainty (2σ) for approximately the right reasons; that is, the models achieve accuracy in the surface wind stress forcing and the representation of the difference in the meridional density across the current. Improved observations allow for a better assessment of the SO circulation and its properties.

 
more » « less
NSF-PAR ID:
10117675
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
18
ISSN:
0894-8755
Page Range / eLocation ID:
p. 5915-5940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct consequence of the unique and complex ocean circulation that exists there. Previous generations of climate models have struggled to accurately represent key SO properties and processes that influence the large-scale ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 performance relative to CMIP3 and CMIP5 is presented. CMIP6 models show improved performance in the surface wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly represented. While generational improvement is found in many metrics, persistent systematic biases are highlighted that should be a priority during model development. These biases need to be considered when interpreting projected trends or biogeochemical properties in this region. 
    more » « less
  2. Climatological rainfall across much of the Greater Horn of Africa has a bimodal annual cycle characterized by the short rains from October to December and the long rains from March to May. Previous generations of climate models from the Coupled Model Intercomparison Project (CMIP3 and CMIP5) generally misrepresented the bimodal rainfall distribution in this region by generating too much rainfall during the short rains and too little during the long rains. The peak of the long rains in these models also typically showed a pronounced 1-month lag relative to observations. Here, the ability of 21 CMIP6 models to properly simulate the observed, climatological annual cycle of Greater Horn rainfall is examined, comparing results with CMIP5 and CMIP3. As previous work has shown a connection between Greater Horn climatological rainfall biases and model biases in sea surface temperatures (SSTs), pattern correlations of climatological SST biases are also analysed. For the multi-model mean, it is found that the earlier biases in Greater Horn rainfall and associated SSTs persist in CMIP6. Examining only the three best performing models in each CMIP group reveals the CMIP6 models outperform those in CMIP3, with mixed results regarding improvements over CMIP5. For the best performing CMIP6 models, the SST and 850 hPa wind biases are reduced over the Indian Ocean relative to the other CMIP6 models examined. No statistically significant relationship was identified between CMIP6 model performance and the horizontal resolution of the model. Combined, these results indicate the importance of properly simulating the annual cycle of SSTs in order to successfully model the observed rainfall annual cycle in the Greater Horn. 
    more » « less
  3. Abstract

    The persistent inter‐model spread in the response of global‐mean surface temperature to increased CO2(known as the “Equilibrium Climate Sensitivity,” or “ECS”) is a crucial problem across model generations. This work examines the influence of the models' present‐day atmospheric circulation climatologies, and the accompanying climatological cloud radiative effects, in explaining that spread. We analyze the Coupled Model Intercomparison Project Phase 6 (CMIP6) models and find that they simulate a more poleward, and thus more realistic, edge of the Hadley cell (HC) in the Southern Hemisphere than the CMIP5 models, although the climatological shortwave cloud radiative effects are similar in the two generations of models. A few CMIP5 models with extreme equatorward biases in the HC edge exhibited high ECS due to strong Southern midlatitude shortwave cloud radiative warming in response to climate change, suggesting an ECS dependence on HC position. We find that such constraint no longer holds for the CMIP6 models, due to the absence of models with extreme HC climatologies. In spite of this, however, the CMIP6 models show an increased spread in ECS, with more models in the high ECS range. In addition, an improved representation of the climatological jet dynamics does not lead to a new emergent constraint in the CMIP6 models either.

     
    more » « less
  4. Abstract. The ice sheet model intercomparison project for CMIP6 (ISMIP6) effort brings together the ice sheet and climate modeling communities to gain understanding of the ice sheet contribution to sea level rise. ISMIP6 conducts stand-alone ice sheet experiments that use space- and time-varying forcing derived from atmosphere–ocean coupled global climate models (AOGCMs) to reflect plausible trajectories for climate projections. The goal of this study is to recommend a subset of CMIP5 AOGCMs (three core and three targeted) to produce forcing for ISMIP6 stand-alone ice sheet simulations, based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century. The selection is performed separately for Greenland and Antarctica. Model evaluation over the historical period focuses on variables used to generate ice sheet forcing. For stage (i), we combine metrics of atmosphere and surface ocean state (annual- and seasonal-mean variables over large spatial domains) with metrics of time-mean subsurface ocean temperature biases averaged over sectors of the continental shelf. For stage (ii), we maximize the diversity of climate projections among the best-performing models. Model selection is also constrained by technical limitations, such as availability of required data from RCP2.6 and RCP8.5 projections. The selected top three CMIP5 climate models are CCSM4, MIROC-ESM-CHEM, and NorESM1-M for Antarctica and HadGEM2-ES, MIROC5, and NorESM1-M for Greenland. This model selection was designed specifically for ISMIP6 but can be adapted for other applications. 
    more » « less
  5. null (Ed.)
    Abstract Climate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) vary significantly in their ability to simulate the phase and amplitude of atmospheric stationary waves in the midlatitude Southern Hemisphere. These models also suffer from a double intertropical convergence zone (ITCZ), with excessive precipitation in the tropical eastern South Pacific, and many also suffer from a biased simulation of the dynamics of the Agulhas Current around the tip of South Africa. The intermodel spread in the strength and phasing of SH midlatitude stationary waves in the CMIP archive is shown to be significantly correlated with the double-ITCZ bias and biases in the Agulhas Return Current. An idealized general circulation model (GCM) is used to demonstrate the causality of these links by prescribing an oceanic heat flux out of the tropical east Pacific and near the Agulhas Current. A warm bias in tropical east Pacific SSTs associated with an erroneous double ITCZ leads to a biased representation of midlatitude stationary waves in the austral hemisphere, capturing the response evident in CMIP models. Similarly, an overly diffuse sea surface temperature gradient associated with a weak Agulhas Return Current leads to an equatorward shift of the Southern Hemisphere jet by more than 3° and weak stationary wave activity in the austral hemisphere. Hence, rectification of the double-ITCZ bias and a better representation of the Agulhas Current should be expected to lead to an improved model representation of the austral hemisphere. 
    more » « less