skip to main content


Title: The Impacts of Using Mixed Physics in the Community Leveraged Unified Ensemble
Abstract

A well-known problem in high-resolution ensembles has been a lack of sufficient spread among members. Modelers often have used mixed physics to increase spread, but this can introduce problems including computational expense, clustering of members, and members that are not all equally skillful. Thus, a detailed examination of the impacts of using mixed physics is important. The present study uses two years of Community Leveraged Unified Ensemble (CLUE) output to isolate the impact of mixed physics in 36-h forecasts made using a convection-permitting ensemble with 3-km horizontal grid spacing. One 10-member subset of the CLUE used only perturbed initial conditions (ICs) and lateral boundary conditions (LBCs) while another 10-member ensemble used the same mixed ICs and LBCs but also introduced mixed physics. The cases examined occurred during NOAA’s Hazardous Weather Testbed Spring Forecast Experiments in 2016 and 2017. Traditional gridpoint metrics applied to each member and the ensemble as a whole, along with object-based verification statistics for all members, were computed for composite reflectivity and 1- and 3-h accumulated precipitation using the Model Evaluation Tools (MET) software package. It is found that the mixed physics increases variability substantially among the ensemble members, more so for reflectivity than precipitation, such that the envelope of members is more likely to encompass the observations. However, the increased variability is mostly due to the introduction of both substantial high biases in members using one microphysical scheme, and low biases in other schemes. Overall ensemble skill is not substantially different from the ensemble using a single physics package.

 
more » « less
PAR ID:
10117831
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather and Forecasting
Volume:
34
Issue:
4
ISSN:
0882-8156
Page Range / eLocation ID:
p. 849-867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.

     
    more » « less
  2. Variability of North Atlantic annual hurricane frequency during 1951–2010 is studied using a 100-member ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The ensemble mean results well capture the interannual-to-decadal variability of hurricane frequency in best track data since 1970, and suggest that the current best track data might underestimate hurricane frequency prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the main development region (MDR) accounts for more than 80% of the SST-forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a useful predictor; a 1°C increase in this SST difference produces 7.05 ± 1.39 more hurricanes. The hurricane frequency also exhibits strong internal variability that is systematically larger in the model than observations. The seasonal-mean environment is highly correlated among ensemble members and contributes to less than 10% of the ensemble spread in hurricane frequency. The strong internal variability is suggested to originate from weather to intraseasonal variability and nonlinearity. In practice, a 20-member ensemble is sufficient to capture the SST-forced variability.

     
    more » « less
  3. Abstract

    Ensembles of predictions are critical to modern weather forecasting. However, visualizing ensembles and their means in a useful way remains challenging. Existing methods of creating ensemble means do not recognize the physical structures that humans could identify within the ensemble members; therefore, visualizations for variables such as reflectivity lose important information and are difficult for human forecasters to interpret. In response, the authors create an improved ensemble mean that retains more structural information. The authors examine and expand upon the object-based Geometry-Sensitive Ensemble Mean (GEM) defined by Li and Zhang from a meteorological perspective. The authors apply low-intensity thresholding to WRF-simulated radar reflectivity images of lake-effect snowbands, tropical cyclones, and severe thunderstorms and then process them with the GEM system. Gaussian mixture model–based signatures retain the geometric structure of these phenomena and are used to compute a Wasserstein barycenter as the centroid for the ensemble; D2 clustering is employed to examine different scenarios among the ensemble members. Three types of ensemble mean image are created from the centroid of the ensemble or cluster, which each improve upon the traditional pixel-wise average in different ways, successfully capture aspects of the ensemble members’ structure, and have potential applications for future forecasting efforts. The adjusted best member is a better representative member, the Bayesian posterior mean is an improved structure-based weighted average, and the mixture density mean is an outline of the key structures in the ensemble. Each is shown to improve upon a simple arithmetic mean via quantitative comparison with observations.

     
    more » « less
  4. Abstract

    Assessing uncertainty in future climate projections requires understanding both internal climate variability and external forcing. For this reason, single‐model initial condition large ensembles (SMILEs) run with Earth System Models (ESMs) have recently become popular. Here we present a new 20‐member SMILE with the Energy Exascale Earth System Model version 1 (E3SMv1‐LE), which uses a “macro” initialization strategy choosing coupled atmosphere/ocean states based on inter‐basin contrasts in ocean heat content (OHC). The E3SMv1‐LE simulates tropical climate variability well, albeit with a muted warming trend over the twentieth century due to overly strong aerosol forcing. The E3SMv1‐LE's initial climate spread is comparable to other (larger) SMILEs, suggesting that maximizing inter‐basin ocean heat contrasts may be an efficient method of generating ensemble spread. We also compare different ensemble spread across multiple SMILEs, using surface air temperature and OHC. The Community Earth system Model version 1, the only ensemble which utilizes a “micro” initialization approach perturbing only atmospheric initial conditions, yields lower spread in the first ∼30 years. The E3SMv1‐LE exhibits a relatively large spread, with some evidence for anthropogenic forcing influencing spread in the late twentieth century. However, systematic effects of differing “macro” initialization strategies are difficult to detect, possibly resulting from differing model physics or responses to external forcing. Notably, the method of standardizing results affects ensemble spread: control simulations for most models have either large background trends or multi‐centennial variability in OHC. This spurious disequlibrium behavior is a substantial roadblock to understanding both internal climate variability and its response to forcing.

     
    more » « less
  5. Abstract

    Arctic sea ice loss in response to a warming climate is assessed in 42 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Sea ice observations show a significant acceleration in the rate of decline commencing near the turn of the twenty-first century. It is our assertion that state-of-the-art climate models should qualitatively reflect this accelerated trend within the limitations of internal variability and observational uncertainty. Our analysis shows that individual CMIP6 simulations of sea ice depict a wide range of model spread on biases and anomaly trends both across models and among their ensemble members. While the CMIP6 multimodel mean captures the observed sea ice area (SIA) decline relatively well, an individual model’s ability to represent the acceleration in sea ice decline remains a challenge. Seventeen (40%) out of 42 CMIP6 models and 37 (13%) out of the total 286 ensemble members reasonably capture the observed trends and acceleration in SIA decline. In addition, a larger ensemble size appears to increase the odds for a model to include at least one ensemble member skillfully representing the accelerated SIA trends. Simulations of sea ice volume (SIV) show much larger spread and uncertainty than SIA; however, due to limited availability of sea ice thickness data, these are not as well constrained by observations. Finally, we find that models with more ocean heat transport simulate larger sea ice declines, which suggests an emergent constraint in CMIP6 ensembles. This relationship points to the need for better understanding and modeling of ice–ocean interactions, especially with respect to frazil ice growth.

     
    more » « less