skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Delocalized Eta Invariants, Algebraicity, and K-Theory of Group C*-Algebras
Abstract In this paper, we establish a precise connection between higher rho invariants and delocalized eta invariants. Given an element in a discrete group, if its conjugacy class has polynomial growth, then there is a natural trace map on the $$K_0$$-group of its group $$C^\ast$$-algebra. For each such trace map, we construct a determinant map on secondary higher invariants. We show that, under the evaluation of this determinant map, the image of a higher rho invariant is precisely the corresponding delocalized eta invariant of Lott. As a consequence, we show that if the Baum–Connes conjecture holds for a group, then Lott’s delocalized eta invariants take values in algebraic numbers. We also generalize Lott’s delocalized eta invariant to the case where the corresponding conjugacy class does not have polynomial growth, provided that the strong Novikov conjecture holds for the group.  more » « less
Award ID(s):
1800737 2000082
PAR ID:
10117898
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study the behavior of the heat kernel of the Hodge Laplacian on a contact manifold endowed with a family of Riemannian metrics that blow-up the directions transverse to the contact distribution. We apply this to analyze the behavior of global spectral invariants such as the $$\eta $$-invariant and the determinant of the Laplacian. In particular, we prove that contact versions of the relative $$\eta $$-invariant and the relative analytic torsion are equal to their Riemannian analogues and hence topological. 
    more » « less
  2. Abstract We develop new tools to analyze the complexity of the conjugacy equivalence relation , whenever is a left‐orderable group. Our methods are used to demonstrate nonsmoothness of for certain groups of dynamical origin, such as certain amalgams constructed from Thompson's group . We also initiate a systematic analysis of , where is a 3‐manifold. We prove that if is not prime, then is a universal countable Borel equivalence relation, and show that in certain cases the complexity of is bounded below by the complexity of the conjugacy equivalence relation arising from the fundamental group of each of the JSJ pieces of . We also prove that if is the complement of a nontrivial knot in then is not smooth, and show how determining smoothness of for all knot manifolds is related to the L‐space conjecture. 
    more » « less
  3. Sylvain Crovisier; Raphael Krikorian; Carlos Matheus; Samuel Senti. (Ed.)
    We associate to each non-degenerate smooth interval map a number measuring its global asymptotic expansion. We show that this number can be cal- culated in various different ways. A consequence is that several natural notions of nonuniform hyperbolicity coincide. In this way we obtain an extension to interval maps with an arbitrary number of critical points of the remarkable result of Nowicki and Sands characterizing the Collet-Eckmann condition for unimodal maps. This also solves a conjecture of Luzzatto in dimension 1. Combined with a result of Nowicki and Przytycki, these considerations imply that several natural nonuniform hyperbolicity conditions are invariant under topo- logical conjugacy. Another consequence is for the thermodynamic formalism: A non- degenerate smooth map has a high-temperature phase transition if and only if it is not Lyapunov hyperbolic. 
    more » « less
  4. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping class groups should send pseudo-Anosov mapping classes to elements of infinite order (for large enough level r). In this paper, we relate the AMU conjecture to a question about the growth of the Turaev-Viro invariants TVr of hyperbolic 3-manifolds. We show that if the r-growth of |TVr(M)| for a hyperbolic 3-manifold M that fibers over the circle is exponential, then the monodromy of the fibration of M satisfies the AMU conjecture. Building on earlier work \cite{DK} we give broad constructions of (oriented) hyperbolic fibered links, of arbitrarily high genus, whose SO(3)-Turaev-Viro invariants have exponential r-growth. As a result, for any g>n⩾2, we obtain infinite families of non-conjugate pseudo-Anosov mapping classes, acting on surfaces of genus g and n boundary components, that satisfy the AMU conjecture. We also discuss integrality properties of the traces of quantum representations and we answer a question of Chen and Yang about Turaev-Viro invariants of torus links. 
    more » « less
  5. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping class groups should send pseudo-Anosov mapping classes to elements of infinite order (for large enough level r). In this paper, we relate the AMU conjecture to a question about the growth of the Turaev-Viro invariants TVr of hyperbolic 3-manifolds. We show that if the r-growth of |TVr(M)| for a hyperbolic 3-manifold M that fibers over the circle is exponential, then the monodromy of the fibration of M satisfies the AMU conjecture. Building on earlier work \cite{DK} we give broad constructions of (oriented) hyperbolic fibered links, of arbitrarily high genus, whose SO(3)-Turaev-Viro invariants have exponential r-growth. As a result, for any g>n⩾2, we obtain infinite families of non-conjugate pseudo-Anosov mapping classes, acting on surfaces of genus g and n boundary components, that satisfy the AMU conjecture. We also discuss integrality properties of the traces of quantum representations and we answer a question of Chen and Yang about Turaev-Viro invariants of torus links. 
    more » « less