skip to main content


Title: The Role of RNA-Binding Protein OsTudor-SN in Post-Transcriptional Regulation of Seed Storage Proteins and Endosperm Development
Abstract

Tudor-SN is involved in a myriad of transcriptional and post-transcriptional processes due to its modular structure consisting of 4 tandem SN domains (4SN module) and C-terminal Tsn module consisting of Tudor-partial SN domains. We had previously demonstrated that OsTudor-SN is a key player for transporting storage protein mRNAs to specific ER subdomains in developing rice endosperm. Here, we provide genetic evidence that this multifunctional RBP is required for storage protein expression, seed development and protein body formation. The rice EM1084 line, possessing a nonsynonymous mutation in the 4SN module (SN3 domain), exhibited a strong reduction in grain weight and storage protein accumulation, while a mutation in the Tudor domain (47M) or the loss of the Tsn module (43M) had much smaller effects. Immunoelectron microscopic analysis showed the presence of a new protein body type containing glutelin and prolamine inclusions in EM1084, while 43M and 47M exhibited structurally modified prolamine and glutelin protein bodies. Transcriptome analysis indicates that OsTudor-SN also functions in regulating gene expression of transcriptional factors and genes involved in developmental processes and stress responses as well as for storage proteins. Normal protein body formation, grain weight and expression of many genes were partially restored in EM1084 transgenic line complemented with wild-type OsTudor-SN gene. Overall, our study showed that OsTudor-SN possesses multiple functional properties in rice storage protein expression and seed development and that the 4SN and Tsn modules have unique roles in these processes.

 
more » « less
NSF-PAR ID:
10121233
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant and Cell Physiology
Volume:
60
Issue:
10
ISSN:
0032-0781
Page Range / eLocation ID:
p. 2193-2205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Alternative polyadenylation (APA) is a widespread post‐transcriptional mechanism that regulates gene expression throughmRNAmetabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativaL.). However, little is known about theAPA‐mediated regulation underlying the distinct characteristics between two major rice subspecies,indicaandjaponica. Using a poly(A)‐tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage betweenindicaandjaponica, and extensive differentiation inAPAprofiles was detected genome‐wide. Genes with subspecies‐specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance ofindicaand cold‐stress tolerance ofjaponica. In most tissues, differential usage ofAPAsites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000‐seed weight. In leaves of the booting stage,APAsite‐switching genes displayed global shortening of 3′ untranslated regions with increased expression inindicacompared withjaponica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis inindicathan injaponica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest thatAPAmay be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post‐transcriptional genetic basis underlying the divergence of rice traits.

     
    more » « less
  2. Goldman, Gustavo H. (Ed.)
    ABSTRACT Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum . Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa , which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum . Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction. 
    more » « less
  3. Abstract

    During the later stages of seed maturation, two key adaptive traits are acquired that contribute to seed lifespan and dispersal, longevity and dormancy. The seed‐specific heat shock transcription factor A9 is an important hub gene in the transcriptional network of late seed maturation. Here, we demonstrate that HSFA9 plays a role in thermotolerance rather than in ex situ seed conservation. Storage ofhsfa9seeds ofMedicago truncatulaand Arabidopsis had comparable lifespan at moderate storage relative humidity (RH), whereas at high RH,hsfa9seeds lost their viability much faster than wild type seeds. Furthermore, we show that inM.truncatula, Mthsfa9seeds acquired more dormancy during late maturation than wild type. Transient expression of MtHSFA9in hairy roots and transcriptome analysis of Mthsfa9Tnt1 insertion mutants identified a deregulation of genes involved in ABA biosynthesis, catabolism and signalling. Consistent with these results,Mthsfa9seeds exhibited increased ABA levels and higher sensitivity to ABA. These data suggest that in legumes,HSFA9acts as a negative regulator of the depth of seed dormancy during seed development via the modulation of hormonal balance.

     
    more » « less
  4. Abstract

    Alternatively spliced genes produce multiple spliced isoforms, called transcript variants. In differential alternative splicing, transcript variant abundance differs across sample types. Differential alternative splicing is common in animal systems and influences cellular development in many processes, but its extent and significance is not as well known in plants. To investigate differential alternative splicing in plants, we examined RNA‐Seq data from rice seedlings. The data included three biological replicates per sample type, approximately 30 million sequence alignments per replicate, and four sample types: roots and shoots treated with exogenous cytokinin delivered hydroponically or a mock treatment. Cytokinin treatment triggered expression changes in thousands of genes but had negligible effect on splicing patterns. However, many genes were differentially spliced between mock‐treated roots and shoots, indicating that our methods were sufficiently sensitive to detect differential splicing between data sets. Quantitative fragment analysis of reverse transcriptase‐PCR products made from newly prepared rice samples confirmed 9 of 10 differential splicing events between rice roots and shoots. Differential alternative splicing typically changed the relative abundance of splice variants that co‐occurred in a data set. Analysis of a similar (but less deeply sequenced) RNA‐Seq data set fromArabidopsisshowed the same pattern. In both theArabidopsisand rice RNA‐Seq data sets, most genes annotated as alternatively spliced had small minor variant frequencies. Of splicing choices with abundant support for minor forms, most alternative splicing events were located within the protein‐coding sequence and maintained the annotated reading frame. A tool for visualizing protein annotations in the context of genomic sequence (ProtAnnot) together with a genome browser (Integrated Genome Browser) were used to visualize and assess effects of differential splicing on gene function. In general, differentially spliced regions coincided with conserved protein domains, indicating that differential alternative splicing is likely to affect protein function between root and shoot tissue in rice.

     
    more » « less
  5. Administration of FVIII-Expressing Human Placental Cells to Juvenile Sheep Yields Multi-Organ Engraftment, Therapeutic Plasma FVIII Levels and Alter Immune Signaling Pathways to Evade FVIII Inhibitor Induction 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster III Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Immune Mechanism, Diseases, Gene Therapy, Therapies, Adverse Events, Biological Processes, Transplantation Monday, December 13, 2021, 6:00 PM-8:00 PM We have previously reported that normal juvenile sheep that received weekly intravenous (IV) infusions of human (n=3) or an expression/secretion-optimized, bioengineered human/porcine hybrid (ET3) FVIII protein (n=3) for 5 weeks (20 IU/kg) developed anti-FVIII inhibitory antibodies (10-116 BU, and IgG titers of 1:20–1:245) by week 3 of infusion. By contrast, the IV infusion, or IP administration, of human placental mesenchymal cells (PLC) transduced with a lentiviral vector encoding a myeloid codon-optimized ET3 transgene (PLC-mcoET3) to produce high levels of ET3 protein (4.9-6IU/10^6 cells/24h) enabled the delivery of FVIII without eliciting antibodies, despite using PLC-mcoET3 doses that provided ~20-60 IU/kg ET3 each 24h to mirror the amount of FVIII protein infused. In addition, we showed that the route of PLC-mcoET3 administration (IP vs IV) did not impact the resultant plasma FVIII levels, with animals in these two groups exhibiting mean increases in FVIII activity (quantified by aPTT) of 30.9% and 34.2%, respectively, at week 15 post-treatment. Here, we investigated whether the sites and levels of PLC-mcoET3 engraftment were dependent upon the route of administration and performed s sheep-specific multiplexed transcriptomic analysis (NanoString) to define the immune signaling pathways that thwarted FVIII/ET3 protein immune response when ET3 was delivered through PLC. Tissue samples were collected from various organs at euthanasia and RT-qPCR performed using primers specific to the mcoET3 transgene, to the human housekeeping transcript GAPDH, and to sheep GAPDH, to quantify PLC-mcoET3 tissue engraftment, and normalize the results. RT-qPCR demonstrated PLC-mcoET3 engrafted, in both IP and IV groups, in all the organs evaluated (liver, lung, lymph nodes, thymus, and spleen). Animals that received PLC-mcoET3 via the IP route displayed higher overall levels of engraftment than their IV counterparts. The spleen was the preferential organ of engraftment for both IP and IV groups (IP:2.41±1.97%; IV: 0.64±0.54%). The IP group exhibited significantly higher engraftment in the left lobe of the liver (IP: 1.36±0.35%; IV: 0.041±0.022%), which was confirmed by immunohisto-chemistry (IHC) with an antibody to the human nuclear antigen Ku80 and ImageJ analysis (IP:5.24±3.36%; IV: 0±0). Of note is that the IP route resulted in higher levels of engraftment in the thymus, while IV infusion yielded higher levels of PLC-mcoET3 in lymph nodes. Analysis of H&E-stained tissues demonstrated they were devoid of any abnormal histologic changes and exhibited no evidence of hyperplasia or neoplasia, supporting the safety of the cell platform, irrespective of the route of administration. To date, NanoString analysis of PBMC collected at day 0, week 1, and week 5 post-infusion demonstrated that animals who received FVIII protein had upregulation of UBA5 and BATF, genes involved in antigen processing and Th17 signaling pathways, respectively. Although both IV and IP recipients of PLC-mcoET3 also had an increase in BATF, the IV group exhibited upregulation of BTLA, a gene involved in immune-tolerance, and downregulation of NOTCH and DDL1, involved in T cell differentiation, as well as MAPK12 and PLCG1, genes involved in proinflammatory cytokine regulation and T signaling within the Th17 signature. In IP recipients, BTLA, NOTCH, and DLL1 were all downregulated. Since ET3-reactive Th1 cells were not present in any of the treated animals, it is possible that the Th17 cells are responsible for the inhibitory antibodies seen in the juvenile sheep treated with FVIII/ET3 protein, while in animals receiving PLC-mcoET3, downregulation of genes involved in T cell differentiation and proinflammatory cytokine signaling keeps the immune system in check to avoid an immune response. Disclosures: Doering: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months. Spencer: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months. 
    more » « less