skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Inference of differential gene regulatory networks based on gene expression and genetic perturbation data
Abstract Motivation

Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy.

Results

In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions.

Availability and implementation

The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10118492
Author(s) / Creator(s):
; ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cowen, Lenore (Ed.)
    Abstract Summary Designing interventions to control gene regulation necessitates modeling a gene regulatory network by a causal graph. Currently, large-scale gene expression datasets from different conditions, cell types, disease states, and developmental time points are being collected. However, application of classical causal inference algorithms to infer gene regulatory networks based on such data is still challenging, requiring high sample sizes and computational resources. Here, we describe an algorithm that efficiently learns the differences in gene regulatory mechanisms between different conditions. Our difference causal inference (DCI) algorithm infers changes (i.e. edges that appeared, disappeared, or changed weight) between two causal graphs given gene expression data from the two conditions. This algorithm is efficient in its use of samples and computation since it infers the differences between causal graphs directly without estimating each possibly large causal graph separately. We provide a user-friendly Python implementation of DCI and also enable the user to learn the most robust difference causal graph across different tuning parameters via stability selection. Finally, we show how to apply DCI to single-cell RNA-seq data from different conditions and cell states, and we also validate our algorithm by predicting the effects of interventions. Availability and implementation Python package freely available at http://uhlerlab.github.io/causaldag/dci. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Motivation

    Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges.

    Results

    In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision.

    Availability and implementation

    JRmGRN is available as a R program from: https://github.com/wenpingd.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    The analysis of spatially resolved transcriptome enables the understanding of the spatial interactions between the cellular environment and transcriptional regulation. In particular, the characterization of the gene–gene co-expression at distinct spatial locations or cell types in the tissue enables delineation of spatial co-regulatory patterns as opposed to standard differential single gene analyses. To enhance the ability and potential of spatial transcriptomics technologies to drive biological discovery, we develop a statistical framework to detect gene co-expression patterns in a spatially structured tissue consisting of different clusters in the form of cell classes or tissue domains.

    Results

    We develop SpaceX (spatially dependent gene co-expression network), a Bayesian methodology to identify both shared and cluster-specific co-expression network across genes. SpaceX uses an over-dispersed spatial Poisson model coupled with a high-dimensional factor model which is based on a dimension reduction technique for computational efficiency. We show via simulations, accuracy gains in co-expression network estimation and structure by accounting for (increasing) spatial correlation and appropriate noise distributions. In-depth analysis of two spatial transcriptomics datasets in mouse hypothalamus and human breast cancer using SpaceX, detected multiple hub genes which are related to cognitive abilities for the hypothalamus data and multiple cancer genes (e.g. collagen family) from the tumor region for the breast cancer data.

    Availability and implementation

    The SpaceX R-package is available at github.com/bayesrx/SpaceX.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model.

    Results

    We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks.

    Availability and implementation

    The source code and data is available at https://github.com/MihirBafna/CLARIFY.

     
    more » « less
  5. Abstract Background

    Characterizing the topology of gene regulatory networks (GRNs) is a fundamental problem in systems biology. The advent of single cell technologies has made it possible to construct GRNs at finer resolutions than bulk and microarray datasets. However, cellular heterogeneity and sparsity of the single cell datasets render void the application of regular Gaussian assumptions for constructing GRNs. Additionally, most GRN reconstruction approaches estimate a single network for the entire data. This could cause potential loss of information when single cell datasets are generated from multiple treatment conditions/disease states.

    Results

    To better characterize single cell GRNs under different but related conditions, we propose the joint estimation of multiple networks using multiple signed graph learning (scMSGL). The proposed method is based on recently developed graph signal processing (GSP) based graph learning, where GRNs and gene expressions are modeled as signed graphs and graph signals, respectively. scMSGL learns multiple GRNs by optimizing the total variation of gene expressions with respect to GRNs while ensuring that the learned GRNs are similar to each other through regularization with respect to a learned signed consensus graph. We further kernelize scMSGL with the kernel selected to suit the structure of single cell data.

    Conclusions

    scMSGL is shown to have superior performance over existing state of the art methods in GRN recovery on simulated datasets. Furthermore, scMSGL successfully identifies well-established regulators in a mouse embryonic stem cell differentiation study and a cancer clinical study of medulloblastoma.

     
    more » « less