An on-going question in plant hydraulic research is whether there is intra-specific variability and/or plasticity in xylem traits. Plasticity could be important in taxa that colonize diverse habitats. We used Tamarix, a non-native woody plant, to investigate population differences in hydraulic conductivity (Ks), vulnerability-to-embolism curves and vessel anatomy. We also conducted a season-long drought experiment to determine water potentials associated with crown dieback of field-grown plants. We measured vessel length and diameter, and compared visual (micro-computed tomography; microCT) and hydraulic methods to quantify percentage loss in hydraulic conductivity (PLC). Among plants grown in a common environment, we did not find differences in our measured traits between two populations of Tamarix that differ in salinity at their source habitats. This taxon is relatively vulnerable to embolism. Within samples, large diameter vessels displayed increased vulnerability to embolism. We found that the microCT method overestimated theoretical conductivity and underestimated PLC compared with the hydraulic method. We found agreement for water potentials leading to crown dieback and results from the hydraulic method. Saplings, grown under common conditions in the present study, did not differ in their xylem traits, but prior research has found difference among source-site grown adults. This suggests that plasticity may be key in the success of Tamarix occurring across a range of habits in the arid southwest USA.
Vulnerability of xylem to embolism is an important trait related to drought resistance of plants. Methods continue to be developed and debated for measuring embolism. We tested three methods (benchtop dehydration/hydraulic, micro-computed tomography (microCT) and optical) for assessing the vulnerability to embolism of a native California oak species (Quercus douglasii Hook. & Arn.), including an analysis of three different stem ages. All three methods were found to significantly differ in their estimates, with a greater resistance to embolism as follows: microCT > optical > hydraulic. Careful testing was conducted for the hydraulic method to evaluate multiple known potential artifacts, and none was found. One-year-old stems were more resistant than older stems using microCT and optical methods, but not hydraulic methods. Divergence between the microCT and optical methods from the standard hydraulic method was consistent with predictions based on known errors when estimating theoretical losses in hydraulic function in both microCT and optical methods. When the goal of a study is to describe or predict losses in hydraulic conductivity, neither the microCT nor optical methods are reliable for accurately constructing vulnerability curves of stems; nevertheless, these methods may be useful if the goal of a study is to identify embolism events irrespective of hydraulic conductivity or hydraulic function.
more » « less- PAR ID:
- 10118589
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Tree Physiology
- ISSN:
- 1758-4469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Recent findings suggest that tree mortality and post‐drought recovery of gas exchange can be predicted from loss of function within the water transport system. Understanding the susceptibility of plants to hydraulic damage requires knowledge about the vulnerability of different plant organs to stress‐induced hydraulic dysfunction. This is particularly important in the context of vulnerability segmentation between plant tissues which is believed to protect more energetically ‘costly’ tissues, such as woody stems, by sacrificing ‘cheaper’ leaves early under drought conditions.
Differences in vulnerability segmentation between co‐occurring plant species could explain divergent behaviours during drought, yet there are few studies considering how this characteristic may vary within a plant community. Here we investigated community‐wide vulnerability segmentation by comparing leaf/shoot and stem vulnerability in all coexistent dominant canopy and understory woody species in a diverse dry sclerophyll woodland community, including multiple angiosperms and one gymnosperm.
Previously published terminal leaf/shoot vulnerability to loss of water transport capacity was compared with stem xylem vulnerability to embolism measured on the same species at the same site. We calculated hydraulic safety margins for stems to determine variation in the risk of hydraulic failure during drought among species.
The xylem of all species was found to be highly resistant to hydraulic dysfunction, with only two of the eight species exhibiting significantly different vulnerability to the overall mean. No evidence of vulnerability segmentation between shoots/leaves and stems was found in seven of the eight species.
Phylogenetically diverse canopy and understory species in this evergreen sclerophyll woodland appear to have evolved similar strategies of drought resistance, including low xylem vulnerability to embolism and general lack of vulnerability segmentation. This convergence in hydraulic safety indicates a lack of hydraulic niche partitioning in this woodland community.
A free
plain language summary can be found within the Supporting Information of this article. -
Shabala, Sergey (Ed.)Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.more » « less
-
Premise The young seedling life stage is critical for reforestation after disturbance and for species migration under climate change, yet little is known regarding their basic hydraulic function or vulnerability to drought. Here, we sought to characterize responses to desiccation including hydraulic vulnerability, xylem anatomical traits, and impacts on other stem tissues that contribute to hydraulic functioning.
Methods Larix occidentalis ,Pseudotsuga menziesii , andPinus ponderosa (all ≤6 weeks old) were imaged using x‐ray computed microtomography during desiccation to assess seedling biomechanical responses with concurrently measured hydraulic conductivity (k s) and water potential (Ψ ) to assess vulnerability to xylem embolism formation and other tissue damage.Results In non‐stressed samples for all species, pith and cortical cells appeared circular and well hydrated, but they started to empty and deform with decreasing
Ψ which resulted in cell tearing and eventual collapse. Despite the severity of this structural damage, the vascular cambium remained well hydrated even under the most severe drought. There were significant differences among species in vulnerability to xylem embolism formation, with 78% xylem embolism inL. occidentalis byΨ of −2.1 MPa, but only 47.7% and 62.1% inP. ponderosa andP. menziesii at −4.27 and −6.73 MPa, respectively.Conclusions Larix occidentalis seedlings appeared to be more susceptible to secondary xylem embolism compared to the other two species, but all three maintained hydration of the vascular cambium under severe stress, which could facilitate hydraulic recovery by regrowth of xylem when stress is relieved. -
Abstract Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.