skip to main content


Title: Systematic Exploration of the High Likelihood Set of Phylogenetic Tree Topologies
Abstract

Bayesian Markov chain Monte Carlo explores tree space slowly, in part because it frequently returns to the same tree topology. An alternative strategy would be to explore tree space systematically, and never return to the same topology. In this article, we present an efficient parallelized method to map out the high likelihood set of phylogenetic tree topologies via systematic search, which we show to be a good approximation of the high posterior set of tree topologies on the data sets analyzed. Here, “likelihood” of a topology refers to the tree likelihood for the corresponding tree with optimized branch lengths. We call this method “phylogenetic topographer” (PT). The PT strategy is very simple: starting in a number of local topology maxima (obtained by hill-climbing from random starting points), explore out using local topology rearrangements, only continuing through topologies that are better than some likelihood threshold below the best observed topology. We show that the normalized topology likelihoods are a useful proxy for the Bayesian posterior probability of those topologies. By using a nonblocking hash table keyed on unique representations of tree topologies, we avoid visiting topologies more than once across all concurrent threads exploring tree space. We demonstrate that PT can be used directly to approximate a Bayesian consensus tree topology. When combined with an accurate means of evaluating per-topology marginal likelihoods, PT gives an alternative procedure for obtaining Bayesian posterior distributions on phylogenetic tree topologies.

 
more » « less
PAR ID:
10118911
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Systematic Biology
ISSN:
1063-5157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The marginal likelihood of a model is a key quantity for assessing the evidence provided by the data in support of a model. The marginal likelihood is the normalizing constant for the posterior density, obtained by integrating the product of the likelihood and the prior with respect to model parameters. Thus, the computational burden of computing the marginal likelihood scales with the dimension of the parameter space. In phylogenetics, where we work with tree topologies that are high-dimensional models, standard approaches to computing marginal likelihoods are very slow. Here, we study methods to quickly compute the marginal likelihood of a single fixed tree topology. We benchmark the speed and accuracy of 19 different methods to compute the marginal likelihood of phylogenetic topologies on a suite of real data sets under the JC69 model. These methods include several new ones that we develop explicitly to solve this problem, as well as existing algorithms that we apply to phylogenetic models for the first time. Altogether, our results show that the accuracy of these methods varies widely, and that accuracy does not necessarily correlate with computational burden. Our newly developed methods are orders of magnitude faster than standard approaches, and in some cases, their accuracy rivals the best established estimators.

     
    more » « less
  2. Abstract

    Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.

     
    more » « less
  3. Phylogenetic networks extend the phylogenetic tree structure and allow for modeling vertical and horizontal evolution in a single framework. Statistical inference of phylogenetic networks is prohibitive and currently limited to small networks. An approach that could significantly improve phylogenetic network space exploration is based on first inferring an evolutionary tree of the species under consideration, and then augmenting the tree into a network by adding a set of "horizontal" edges to better fit the data. In this paper, we study the performance of such an approach on networks generated under a birth-hybridization model and explore its feasibility as an alternative to approaches that search the phylogenetic network space directly (without relying on a fixed underlying tree). We find that the concatenation method does poorly at obtaining a "backbone" tree that could be augmented into the correct network, whereas the popular species tree inference method ASTRAL does significantly better at such a task. We then evaluated the tree-to-network augmentation phase under the minimizing deep coalescence and pseudo-likelihood criteria. We find that even though this is a much faster approach than the direct search of the network space, the accuracy is much poorer, even when the backbone tree is a good starting tree. Our results show that tree-based inference of phylogenetic networks could yield very poor results. As exploration of the network space directly in search of maximum likelihood estimates or a representative sample of the posterior is very expensive, significant improvements to the computational complexity of phylogenetic network inference are imperative if analyses of large data sets are to be performed. We show that a recently developed divide-and-conquer approach significantly outperforms tree-based inference in terms of accuracy, albeit still at a higher computational cost. 
    more » « less
  4. Abstract

    We study the behavior of phylogenetic tree shapes in the tropical geometric interpretation of tree space. Tree shapes are formally referred to as tree topologies; a tree topology can also be thought of as a tree combinatorial type, which is given by the tree’s branching configuration and leaf labeling. We use the tropical line segment as a framework to define notions of variance as well as invariance of tree topologies: we provide a combinatorial search theorem that describes all tree topologies occurring along a tropical line segment, as well as a setting under which tree topologies do not change along a tropical line segment. Our study is motivated by comparison to the moduli space endowed with a geodesic metric proposed by Billera, Holmes, and Vogtmann (referred to as BHV space); we consider the tropical geometric setting as an alternative framework to BHV space for sets of phylogenetic trees. We give an algorithm to compute tropical line segments which is lower in computational complexity than the fastest method currently available for BHV geodesics and show that its trajectory behaves more subtly: while the BHV geodesic traverses the origin for vastly different tree topologies, the tropical line segment bypasses it.

     
    more » « less
  5. Satta, Yoko (Ed.)
    Abstract Likelihood-based tests of phylogenetic trees are a foundation of modern systematics. Over the past decade, an enormous wealth and diversity of model-based approaches have been developed for phylogenetic inference of both gene trees and species trees. However, while many techniques exist for conducting formal likelihood-based tests of gene trees, such frameworks are comparatively underdeveloped and underutilized for testing species tree hypotheses. To date, widely used tests of tree topology are designed to assess the fit of classical models of molecular sequence data and individual gene trees and thus are not readily applicable to the problem of species tree inference. To address this issue, we derive several analogous likelihood-based approaches for testing topologies using modern species tree models and heuristic algorithms that use gene tree topologies as input for maximum likelihood estimation under the multispecies coalescent. For the purpose of comparing support for species trees, these tests leverage the statistical procedures of their original gene tree-based counterparts that have an extended history for testing phylogenetic hypotheses at a single locus. We discuss and demonstrate a number of applications, limitations, and important considerations of these tests using simulated and empirical phylogenomic data sets that include both bifurcating topologies and reticulate network models of species relationships. Finally, we introduce the open-source R package SpeciesTopoTestR (SpeciesTopology Tests in R) that includes a suite of functions for conducting formal likelihood-based tests of species topologies given a set of input gene tree topologies. 
    more » « less