The experimental results of LEAP (Liquefaction Experiments and Analysis Projects) centrifuge test replicas of a saturated sloping deposit are used to assess the sensitivity of soil accelerations to variability in input motion and soil deposition. A difference metric is used to quantify the dissimilarities between recorded acceleration time histories. This metric is uniquely decomposed in terms of four difference component measures associated with phase, frequency shift, amplitude at 1 Hz, and amplitude of frequency components higher than 2 Hz (2 + Hz). The sensitivity of the deposit response accelerations to differences in input motion amplitude at 1 Hz and 2 + Hz and cone penetration resistance (used as a measure reflecting soil deposition and initial grain packing condition) was obtained using a Gaussian process-based kriging. These accelerations were found to be more sensitive to variations in cone penetration resistance values than to the amplitude of the input motion 1 Hz and 2 + Hz (frequency) components. The sensitivity functions associated with this resistance parameter were found to be substantially nonlinear.
more »
« less
Sub-Hertz Resonance by Weak Measurement
Here we propose and demonstrate a novel weak-measurement-enhanced spectroscopy technique, which allows narrowing the resonance to 0.1 Hz and high sensitivity 7 fT/Hz^1/2 near DC in a room-temperature atomic-vapor cell, by designing a non-Hermitian Hamiltonian.
more »
« less
- PAR ID:
- 10119041
- Date Published:
- Journal Name:
- Nonlinear Optics (NLO) OSA Technical Digest (Optical Society of America, 2019)
- Page Range / eLocation ID:
- NTh2A.1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An analysis is conducted to assess the sensitivity of 17 replicas of a saturated sloping deposit tests conducted within the 2017 Liquefaction Experiments and Analysis Projects (LEAP). A difference analysis is first used to quantify the dissimilarities between recorded input acceleration time histories. This analysis provided a unique decomposition of the differences in terms of phase, frequency-shift, amplitude at 1 Hz, and amplitude of frequency components higher than 2 Hz (2+Hz). A kriging analysis was used to evaluate the sensitivity of the deposit response accelerations to differences in input motion amplitude at 1Hz and 2+Hz and cone penetration resistance. The analysis showed a response that is more sensitive to variations in cone penetration resistance values than to amplitude of the input 1Hz and 2+Hz motion (frequency) components.more » « less
-
An analysis is conducted to assess the sensitivity of 17 replicas of a saturated sloping deposit tests conducted within the 2017 Liquefaction Experiments and Analysis Projects (LEAP). A difference analysis is first used to quantify the dissimilarities between recorded input acceleration time histories. This analysis provided a unique decomposition of the differences in terms of phase, frequency-shift, amplitude at 1 Hz, and amplitude of frequency components higher than 2 Hz (2+Hz). A kriging analysis was used to evaluate the sensitivity of the deposit response accelerations to differences in input motion amplitude at 1Hz and 2+Hz and cone penetration resistance. The analysis showed a response that is more sensitive to variations in cone penetration resistance values than to amplitude of the input 1Hz and 2+Hz motion (frequency) components.more » « less
-
An analysis is conducted to assess the sensitivity of 17 replicas of a saturated sloping deposit tests conducted within the 2017 Liquefaction Experiments and Analysis Projects (LEAP). A difference analysis is first used to quantify the dissimilarities between recorded input acceleration time histories. This analysis provided a unique decomposition of the differences in terms of phase, frequency-shift, amplitude at 1 Hz, and amplitude of frequency components higher than 2 Hz (2+Hz). A kriging analysis was used to evaluate the sensitivity of the deposit response accelerations to differences in input motion amplitude at 1Hz and 2+Hz and cone penetration resistance. The analysis showed a response that is more sensitive to variations in cone penetration resistance values than to amplitude of the input 1Hz and 2+Hz motion (frequency) components.more » « less
-
Abstract A specialized ground‐based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of (a) six 100 Hz sampling high‐speed all‐sky imagers (ASIs), (b) two 10 Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emissions, (c) a 20 Hz sampling fluxgate magnetometer. The 100 Hz ASIs were deployed in four stations in Scandinavia and two stations in Alaska, which have been used for capturing the main pulsations and quasi 3 Hz internal modulations of PsA at the same time. The 10 Hz sampling monochromatic ASIs have been operative in Tromsø, Norway with the 20 Hz sampling magnetometer. Combination of these multiple instruments with the European Incoherent SCATter (EISCAT) radar enables us to detect the low‐altitude ionization due to energetic electron precipitation during PsA and further to reveal the ionospheric electrodynamics behind PsA. Since the launch of the Arase satellite, the data from these instruments have been examined in comparison with the wave and particle data from the satellite in the magnetosphere. In the future, the system can be utilized not only for studies of PsA but also for other classes of aurora in close collaboration with the planned EISCAT_3D project.more » « less
An official website of the United States government

