skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Adding Authenticity to Inquiry in a First-Year, Research-Based, Biology Laboratory Course
Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5–1.7 times greater than the odds for a matched group of students from UM’s traditional biology labs. The authenticity of UMARL may have fostered students’ confidence that they can do real research, reinforcing their persistence in STEM.  more » « less
Award ID(s):
1821657
PAR ID:
10119264
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
18
Issue:
3
ISSN:
1931-7913
Page Range / eLocation ID:
ar38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Course‐based undergraduate research experiences (CUREs) can provide undergraduate students access to research opportunities when student and faculty resources are limited. In addition to expanding research opportunities, CUREs may also be explored as a pedagogical tool for improving student learning of course content and laboratory skills, as well as improving meta‐cognitive features such as confidence. We examined how a 6‐week CURE in an upper‐level undergraduate biochemistry lab affected student gains in content knowledge and confidence in scientific abilities, compared to a non‐CURE section of the same course. We find that gains in content knowledge were similar between CURE and non‐CURE sections, indicating the CURE does not negatively impact student learning. The CURE was associated with a statistically significant gain in student confidence, compared to non‐CURE group. These results show that even a relatively short CURE can be effective in improving student confidence at scientific research skills, in addition to expanding access to research. 
    more » « less
  2. null (Ed.)
    Here we evaluate undergraduate student attitudes about science after each of three authentic research experiences in a semester of an introductory biology laboratory course at Utah State University. The three course-based research experiences (CUREs) vary in length and student freedom, and they cover different areas of biology. Students responded to the science attitude items of the CURE Survey. When compared to national data, our students faired similarly, and all students struggled with certain epistemic assumptions about science knowledge. As also seen in the national database, change in science attitude was slight and nonlinear. Student self confidence in what a career scientist is and in scientific process skills was the best predictor of scientific maturity, not the three CUREs or other aspects of students’ background. We discuss the slight positive and negative change in attitude we did influence, and we note that most students would choose to have another research experience. 
    more » « less
  3. Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM. 
    more » « less
  4. Course-based undergraduate research experiences (CURE) provide valuable opportunities to large numbers of students relatively early in their academic careers and have the potential to attract and retain women and students from underrepresented minority groups both in the sciences and in other technical fields requiring quantitative research literacy. To evaluate the relative success of a multidisciplinary CURE, we compared background characteristics, course experiences and outcomes of men and women under-represented (URM) and non-underrepresented students. Though URM and non-URM students of both genders differed on many background characteristics, and self-reported course experiences, with few exceptions, positive course outcomes and predictors of those outcomes did not differ by URM/gender group. The Passion-Driven Statistics CURE aims to equip the future STEM workforce with the data analysis skills and reasoning needed across industries. Additional research is needed to determine whether this CURE may influence educational and career trajectories for women and URM students. 
    more » « less
  5. In this Great Ideas for Teaching Students (GIFTS) paper, we offer learning outcomes that we are beginning to recognize from our eight-week research experience for undergraduates (REU). There are four characteristics that have been found to be essential to success in Science, Technology, Engineering, and Mathematics (STEM) fields: a strong sense of STEM identity, scientific self-efficacy, a sense of belonging, and a psychological sense of community. This is especially true for first-year and transfer students pursuing STEM undergraduate degrees. A variety of studies have been published that go into detail about why these characteristics in particular have such a significant effect on student performance and retention. This paper will present Critical Self-Reflection as a practical way to integrate development of these characteristics into student research experiences to foster experiential learning that goes beyond increasing technical skills. STEM students are not often trained to critically self-reflect on their experiences in classroom and research settings. An inability for undergraduates to reflect intentionally on their experiences creates greater risk for attrition from STEM disciplines. Curated reflective experiences in collaborative learning settings can offer professional development opportunities to enhance students’ social and technical communication skills. There are four phases within the scaffolded Critical Self-Reflection framework: Learning to Reflect, Reflection for Action, Reflection in Action, and Reflection on Action. When applying the evidence-based practice, STEM undergraduate researchers describe their perceptions via three activities: creating a legacy statement, participating in facilitated dialogue sessions, and writing curated reflection journal entries within an REU. Through critical self-reflection exercises, we are beginning to find growth of first-year and transfer STEM undergraduates in the following areas: understanding of their role in the lab; confidence in their researcher identity; expression of agency; observation and communication skills; and intentionality for action. Participating in this self-reflection allows students to make meaning of their experience enabling them to hone the aforementioned characteristics that creates a pathway from their undergraduate experience to undergraduate degree completion, graduate degree attainment, and to the STEM workforce. 
    more » « less