skip to main content


Title: Adding Authenticity to Inquiry in a First-Year, Research-Based, Biology Laboratory Course
Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5–1.7 times greater than the odds for a matched group of students from UM’s traditional biology labs. The authenticity of UMARL may have fostered students’ confidence that they can do real research, reinforcing their persistence in STEM.  more » « less
Award ID(s):
1821657
NSF-PAR ID:
10119264
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
18
Issue:
3
ISSN:
1931-7913
Page Range / eLocation ID:
ar38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences. 
    more » « less
  4. In this Great Ideas for Teaching Students (GIFTS) paper, we offer learning outcomes that we are beginning to recognize from our eight-week research experience for undergraduates (REU). There are four characteristics that have been found to be essential to success in Science, Technology, Engineering, and Mathematics (STEM) fields: a strong sense of STEM identity, scientific self-efficacy, a sense of belonging, and a psychological sense of community. This is especially true for first-year and transfer students pursuing STEM undergraduate degrees. A variety of studies have been published that go into detail about why these characteristics in particular have such a significant effect on student performance and retention. This paper will present Critical Self-Reflection as a practical way to integrate development of these characteristics into student research experiences to foster experiential learning that goes beyond increasing technical skills. STEM students are not often trained to critically self-reflect on their experiences in classroom and research settings. An inability for undergraduates to reflect intentionally on their experiences creates greater risk for attrition from STEM disciplines. Curated reflective experiences in collaborative learning settings can offer professional development opportunities to enhance students’ social and technical communication skills. There are four phases within the scaffolded Critical Self-Reflection framework: Learning to Reflect, Reflection for Action, Reflection in Action, and Reflection on Action. When applying the evidence-based practice, STEM undergraduate researchers describe their perceptions via three activities: creating a legacy statement, participating in facilitated dialogue sessions, and writing curated reflection journal entries within an REU. Through critical self-reflection exercises, we are beginning to find growth of first-year and transfer STEM undergraduates in the following areas: understanding of their role in the lab; confidence in their researcher identity; expression of agency; observation and communication skills; and intentionality for action. Participating in this self-reflection allows students to make meaning of their experience enabling them to hone the aforementioned characteristics that creates a pathway from their undergraduate experience to undergraduate degree completion, graduate degree attainment, and to the STEM workforce. 
    more » « less
  5. An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promote understanding that goes beyond the purely analytical. Academic research shows that diverse undergraduates gain markedly from the convergence of art and science, and from involvement in collaborative research conducted within a CURE cohort, rather than as an individualized experience (e.g. Shanahan et al. 2022). The CUREs are offered as regular courses for credit, making access equitable via course enrollment. The course designation carries a legitimacy that is sought by students who balance academics with part-time employment. Course information is disseminated via STEM Bridge programs and/or an academic advising hub that reaches students from groups that are insufficiently represented within STEM and cryosphere science. CURE investigation of Amundsen Sea and WAIS problems is worthy objective because: 1) A variety of sample preparation, geochemical methods, and scientific best-practices can be imparted, while educating students about Antarctica’s geological configuration and role in the Earth climate system. 2) Individual projects that are narrowly defined can readily scaffold into collaborative science at the time of data synthesis and interpretation. 3) There is a high likelihood of scientific discovery that contributes to grant objectives. 4) Enrolled students will experience ambiguity and instrumentation setbacks alongside their faculty and instructors, and will likely have an opportunity to withstand/overcome challenges in a manner that trains students in complex problem solving and imparts resilience (St John et al., 2019). Based on our experiences, we consider CUREs as a means to create more inclusive and equitable spaces for learning to do research, and a basis for a broadening future WAIS community. Our groups have yet to assess student learning gains and STEM entry in a robust way, but we can report that two presenters at WAIS 2022 came from our 2021 CURE, and four polar science graduate researchers gained experience via CURE teaching. Data obtained by CURE students is contributing to our NSF projects’ aims to obtain isotope, age, and petrogenetic criteria with bearing on the subglacial bedrock geology, tectonic and landscape evolution, and ice sheet history of MBL. Cited and recommended works: Cascella & Jez, 2018, doi: 10.1021/acs.jchemed.7b00705 Gentile et al., 2017, doi: 10.17226/24622 Shanahan et al. 2022, https://www.cur.org/assets/1/23/01-01_TOC_SPUR_Winter21.pdf Shortlidge & Brownell, 2016, doi: 10.1128/jmbe.v17i3.1103 St. John et al. 2019, EOS, doi: 10.1029/2019EO127285. 
    more » « less