skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning a robot servomotor to exhibit muscle-like dynamics
This work shows one way to tune a servomotor controller to make it perform in a similar way to a biomechanical model of an insect leg joint. Three key metrics were considered: the equilibrium angle of the joint as a function of antagonistic inputs; the dynamics of the free response when perturbed; and the dynamics of active motions. We model an insect leg joint as a hinge actuated by a pair of antagonistic linear Hill muscles that drive a rigid distal leg segment. Passive forces from the exoskeleton are also modeled as passive viscoelastic elements (PVE). We approximate parameter values for the model based on the biomechanics literature, and then dynamically scale them to the scale of our robot, Drosophibot. We show how to tune the servo’s control mapping and feedback gain to mimic the dynamically scaled model of the animal joint.  more » « less
Award ID(s):
1704436
PAR ID:
10119318
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
8th International Conference, Living Machines 2019
Page Range / eLocation ID:
254-265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meder, F.; Hunt, A.; Margheri, L.; Mura, A.; Mazzolai, B. (Ed.)
    A challenge in robotics is to control interactions with the environment by modulating the stiffness of a manipulator’s joints. Smart servos are controlled with proportional feedback gain that is analogous to torsional stiffness of an animal’s joint. In animals, antagonistic muscle groups can be temporarily coactivated to stiffen the joint to provide greater opposition to external forces. However, the joint properties for which coactivation increases the stiffness of the joint remain unknown. In this study, we explore possible mechanisms by building a mathematical model of the stick insect tibia actuated by two muscles, the extensor and flexor tibiae. Muscle geometry, passive properties, and active properties are extracted from the literature. Joint stiffness is calculated by tonically activating the antagonists, perturbing the joint from its equilibrium angle, and calculating the restoring moment generated by the muscles. No reflexes are modeled. We estimate how joint stiffness depends on parallel elastic element stiffness, the shape of the muscle activation curve, and properties of the force-length curve. We find that co-contracting antagonist muscles only stiffens the joint when the peak of the force-length curve occurs at a muscle length longer than that when the joint is at equilibrium and the muscle force versus activation curve is concave-up. We discuss how this information could be applied to the control of a smart servo actuator in a robot leg. 
    more » « less
  2. A challenge in robotics is to control interactions with the environment by modulating the stiffness of a manipulator’s joints. Smart servos are controlled with proportional feedback gain that is analogous to torsional stiffness of an animal’s joint. In animals, antagonistic muscle groups can be temporarily coactivated to stiffen the joint to provide greater opposition to external forces. However, the joint properties for which coactivation increases the stiffness of the joint remain unknown. In this study, we explore possible mechanisms by building a mathematical model of the stick insect tibia actuated by two muscles, the extensor and flexor tibiae. Muscle geometry, passive properties, and active properties are extracted from the literature. Joint stiffness is calculated by tonically activating the antagonists, perturbing the joint from its equilibrium angle, and calculating the restoring moment generated by the muscles. No reflexes are modeled. We estimate how joint stiffness depends on parallel elastic element stiffness, the shape of the muscle activation curve, and properties of the force-length curve. We find that co-contracting antagonist muscles only stiffens the joint when the peak of the force-length curve occurs at a muscle length longer than that when the joint is at equilibrium and the muscle force versus activation curve is concave-up. We discuss how this information could be applied to the control of a smart servo actuator in a robot leg. 
    more » « less
  3. Hunt, Alexander; Vouloutsi, Vasiliki; Moses, Kenneth; Quinn, Roger; Mura, Anna; Prescott, Tony; Verschure, Paul F. (Ed.)
    Load sensing is critical for walking behavior in animals, who have evolved a number of sensory organs and neural systems to improve their agility. In particular, insects measure load on their legs using campaniform sensilla (CS), sensory neurons in the cuticle of high-stress portions of the leg. Extracellular recordings from these sensors in a behaving animal are difficult to collect due to interference from muscle potentials, and some CS groups are largely inaccessible due to their placement on the leg. To better understand what loads the insect leg experiences and what sensory feedback the nervous system may receive during walking, we constructed a dynamically-scaled robotic model of the leg of the stick insect Carausius morosus. We affixed strain gauges in the same positions and orientations as the major CS groups on the leg, i.e., 3, 4, 6A, and 6B. The robotic leg was mounted to a vertically-sliding linear guide and stepped on a treadmill to simulate walking. Data from the strain gauges was run through a dynamic model of CS discharge developed in a previous study. Our experiments reveal stereotypical loading patterns experienced by the leg, even as its weight and joint stiffness is altered. Furthermore, our simulated CS strongly signal the beginning and end of stance phase, two key events in the coordination of walking. 
    more » « less
  4. Sensory feedback from sense organs during animal locomotion can be heavily influenced by an organism’s mechanical structure. In insects, the interplay between sensing and mechanics can be demonstrated in the campaniform sensilla (CS) strain sensors located across the exoskeleton. Leg CS are highly sensitive to the loading state of the limb. In walking, loading is primarily influenced by ground reaction forces (GRF) mediated by the foot, or tarsus. The complex morphology of the tarsus provides compliance, passive and active substrate grip, and an increased moment arm for the GRF, all of which impact leg loading and the resulting CS discharge. To increase the biomimicry of robots we use to study strain feedback during insect walking, we have developed a series of tarsi for our robotic model of a Carausius morosus middle leg. We seek the simplest design that mimics tarsus functionality. Tarsi were designed with varying degrees of compliance, passive grip, and biomimetic structure. We created elastic silicone tarsal joints for several of these models and found that they produced linear stiffness within joint limits across different joint morphologies. Strain gauges positioned in CS locations on the trochanterofemur and tibia recorded strain while the leg stepped on a treadmill. Most, but not all, designs increased axial strain magnitude compared to previous data with no tarsus. Every tarsus design produced positive transversal strain in the tibia, indicating axial torsion in addition to bending. Sudden increases in tibial strain reflected leg slipping during stance. This data show how different aspects of the tarsus may mediate leg loading, allowing us to improve the mechanical biomimicry of future robotic test platforms. 
    more » « less
  5. Meder, F.; Hunt, A.; Margheri, L.; Mura, A.; Mazzolai, B. (Ed.)
    Sensory feedback from sense organs during animal locomotion can be heavily influenced by an organism’s mechanical structure. In insects, the interplay between sensing and mechanics can be demonstrated in the campaniform sensilla (CS) strain sensors located across the exoskeleton. Leg CS are highly sensitive to the loading state of the limb. In walking, loading is primarily influenced by ground reaction forces (GRF) mediated by the foot, or tarsus. The complex morphology of the tarsus provides compliance, passive and active substrate grip, and an increased moment arm for the GRF, all of which impact leg loading and the resulting CS discharge. To increase the biomimicry of robots we use to study strain feedback during insect walking, we have developed a series of tarsi for our robotic model of a Carausius morosus middle leg. We seek the simplest design that mimics tarsus functionality. Tarsi were designed with varying degrees of compliance, passive grip, and biomimetic structure. We created elastic silicone tarsal joints for several of these models and found that they produced linear stiffness within joint limits across different joint morphologies. Strain gauges positioned in CS locations on the trochanterofemur and tibia recorded strain while the leg stepped on a treadmill. Most, but not all, designs increased axial strain magnitude compared to previous data with no tarsus. Every tarsus design produced positive transversal strain in the tibia, indicating axial torsion in addition to bending. Sudden increases in tibial strain reflected leg slipping during stance. This data show how different aspects of the tarsus may mediate leg loading, allowing us to improve the mechanical biomimicry of future robotic test platforms. 
    more » « less