skip to main content


Title: Identifying Barriers and Opportunities for Broadening Computing Participation among Underrepresented High School Students in California
As efforts to broaden participation in computing and provide equitable computer science education to all students increase across the country, within states, and within cities and districts, this research aims to investigate whether existing efforts have increased equity. This research analyzes three years of computer science access, enrollment, and success data across the state of California to: (a) examine whether racial, gender, and socioeconomic equity in CS access, enrollment and success has improved; (b) identify persistent barriers to racial, gender and socioeconomic equity, and (c) inform statewide strategies to ensure equity in computer science across California. Findings indicate despite several promising trends, including an increase in CS access and participation across California, racial, gender and SES gaps remain in access to CS courses, participation, and success. Additional statewide policies and practices are needed to ensure equity in CS across California.  more » « less
Award ID(s):
1837780
NSF-PAR ID:
10119339
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Meeting of the American Education Research Association
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Wright College, an urban open-access community college, independently accredited within the City Colleges of Chicago (CCC) system, is a federally recognized Hispanic-Serving Institution (HSI) with one of the largest community college enrollments of Hispanic students in Illinois. Wright College’s student success rates measured by completion have been strong and improving relative to other national urban community colleges, but are below state and national averages. In 2015 the college piloted a selective guaranteed admission program, Engineering Pathways (EP), to one of the nation’s top engineering schools (The Grainger College of Engineering at the University of Illinois Urbana Champaign, UIUC). Initial results for the small first-year cohort were very positive: 89% transfer rate and all students who transferred to UIUC graduated. The program’s initial success rested on a) cohort model with a small number of students and strong controls; b) co-branding that attracted local students interested in pursuing engineering at UIUC who might not otherwise have enrolled at Wright; c) academic rigor (small class size with Wright College’s curricula matching UIUC); d) robust student support services and structures; and e) a holistic college commitment to equity and inclusive excellence. Wright College obtained a National Foundation Science (NSF)-HSI research grant in 2018 to support the Engineering Pathways. The grant examines EP students’ self-efficacy and sense of belonging. Wright College foregrounds student “belonging” in its equity efforts. Equity work calls for the systemic analysis and tracking of student performance, engagement and participation throughout the student life-cycle, with data-informed analysis of behavior and outcomes through a lens of race, gender and wealth. EP students shared similar racial and ethnic backgrounds as Wright College’s non-engineering students. They attended the same elementary and public schools, have similar family structures, socioeconomic status (SES) and supports. NSF resources assisted Wright College’s creation of a contextualized engineering summer bridge and a more structured pre-engineering program. As enrollment in the EP program increased, the college dedicated additional resources, including faculty, enhanced student support, and guaranteed junior-level transfer to other nearby baccalaureate engineering schools. Central to the effort was significantly greater structure and monitoring of student performance, including academic and support frameworks for non-EP students. Wright College and baccalaureate transfer institutions reviewed and updated articulation agreements. In the Engineering Summer Bridge Program’s first two years, forty-five (45) students who would otherwise have been denied admission to EP are thriving and are positioned to transfer to four-year engineering programs. In this paper, Wright College will review the college’s equity efforts, the structure and implementation of the Engineering Pathways, and the creation of new engineering transfer programs. It will explore visible and invisible barriers to students’ success, contrasting students in Wright College’s EP program with other Wright College students. The authors argue that the systemic pursuit of equity, particularly with a focus on self-efficacy, belonging, and the creation of an environment committed to inclusive excellence, will result in very strong student outcomes. 
    more » « less
  2. This paper explores the potential of virtual education options to fulfill policies designed to broaden participation in computer science (CS) education. Virtual education platforms inherently offer access to a wider range of students than traditional brick-and-mortar schools. Access does not preclude the various socio-economic challenges to engaging these platforms, but this format could be used to mitigate barriers to reaching groups of students that have historically been marginalized in CS courses. In 2019, Georgia passed legislation that requires all middle and high schools to offer CS courses by 2025. The legislation also allowed for virtual courses to satisfy the requirement. While the legislation is intent on broadening participation in CS education, it specifically incorporates a virtual option, making it novel among similar legislative actions across the country. In this context, we examine whether virtual CS courses increase access for marginalized student populations. As such, we explore (1) to what extent do the disparities in CS education found in brick-and-mortar classrooms also appear in virtual settings and (2) to what extent is there an association between modality and rurality on CS course enrollment. Using district enrollment data from 2012 to 2019 for CS courses in Georgia, we calculated the percentage of students in marginalized groups that enrolled in physical courses across the state compared to the percentage enrolled in statewide virtual courses to illuminate existing disparities in enrollment. We conducted this analysis at the district level to highlight variability in representative disparity and the underlying structural differences that might contribute to these disparities. Our analysis provides insight that incorporates the different levels of representative disparity districts have overall. As an early adopter of virtual CS education, the Georgia model provides valuable information for states interested in policies to broaden participation in CS courses. 
    more » « less
  3. Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program. 
    more » « less
  4. The Computer Science (CS) for All national movement is increasingly relying on state-level change to broaden participation in computing. To foster an environment in which all students have opportunities to thrive in CS education, policy action is necessary to help create the learning conditions for success. CS education in California has grown substantially in the last decade, yet opportunity gaps remain for young women and Black, Latinx, and Native American students. Early grassroots efforts to advance equity in computing evolved into the Computer Science for California coalition of K–16 educators, industry leaders, and other equity advocates to promote the growth of equity-minded teaching and learning opportunities in K–12 CS education. New policies at the state level reflect an increasing commitment among Sacramento policymakers to expand CS education. Yet troubling disparities in CS access and success continue to exist between traditionally advantaged students and their historically underserved peers. By drawing on interviews with 20 individuals involved in CS education policy, this study illuminates the contributing factors to recent policy successes and considerations for achieving further progress. Interviewees described the importance of tapping into the values of influential decision makers, educating policymakers about the benefits of CS education, and identifying the problems and solutions that require policy attention. To build the capacity of key policy actors in making informed decisions, this research demonstrates the continued value of providing useful information, developing relationships with policymakers, and creating resources that are easy to consume and understand. The interviews also suggest that attention to funding, disruptions from the COVID-19 pandemic, equity, and ongoing stakeholder support will shape prospects for CS education policy success moving forward.

     
    more » « less
  5. This qualitative research study is part of a larger NSF-funded project entitled "Cogenerative Development of Culturally Relevant Pedagogical Guidelines for Computer Science and Computational Thinking in High Schools." During Year 1 of the project, qualitative semi- structured interviews were conducted with 26 high school students to better understand the challenges and barriers to enrollment in and/or engagement/success in Computer Science courses in high school. A grounded theory approach was used, given the exploratory nature of the study. Students were selected from three regional high schools and had to meet at least one of the criteria associated with underrepresented students in Computer Science: identifying as female; low socioeconomic status; and/or racial/ethnic minority (Black/African American; Hispanic/Latinx/Chicanx; Native American/Alaskan, and Native Hawaiian/Pacific Islander, or multi-racial). Common themes that emerged included the following: Challenges (Financial Factors, Role of Gender (i.e. identifying as female), and Race/Ethnicity Issues); Positive Influences (Role of Teacher, Role of Family); Other Interesting Insights (Wanting to be challenged in Computer Science Classes, Problems with the Marketing of Computer Science as a discipline). Social Identity Theory is used to better understand the experiences of high school students, especially what practices or beliefs keep underrepresented students of Computer Science from enrolling in Computer Science courses in the first place and/or persisting in the Computer Science field. Limitations of the current study are discussed as well as directions for future research and implications for a more culturally relevant pedagogical approach to teaching Computer Science and Computational Thinking in high schools. This project is funded by the National Science Foundation CS for All: Research and RPPs program, Award No. 2122367. 
    more » « less