The viability of the electrolysis of water currently relies on expensive catalysts such as Pt that are far too impractical for industrial-scale use. Thus, there is considerable interest in developing low-cost, earth-abundant nanomaterials and their alloys as a potential alternative to existing standard catalysts. To address this issue, a synergistic approach involving theory and experiment was carried out. The former, based on density functional theory, was conducted to guide the experiment in selecting the ideal dopant and optimal concentration by focusing on 3d, 4d, and 5d elements as dopants on Ni (001) surface. Subsequently, a series of Ni1−xCrx(x= 0.01–0.09) alloy nanocrystals (NCs) with size ranging from 8.3 ± 1.6–18.2 ± 3.2 nm were colloidally synthesized to experimentally investigate the hydrogen evolution reaction (HER) activity. A compositional dependent trend for electrocatalytic activity was observed from both approaches with Ni0.92Cr0.08NCs showed the lowest ΔGHvalue and the lowest overpotential (η−10) at −10 mA cm−2current density (j), suggesting the highest HER activity among all compositions studied. Among alloy NCs, the highest performing Ni0.92Cr0.08composition displayed a mixed Volmer–Heyrovsky HER mechanism, the lowest Tafel slope, and improved stability in alkaline solutions. This study provides critical insights into enhancing the performance of earth-abundant metals through doping-induced electronic structure variation, paving the way for the design of high-efficiency catalysts for water electrolysis.
more »
« less
Steering Elementary Steps towards Efficient Alkaline Hydrogen Evolution via Size-Dependent Ni/NiO Nanoscale Heterosurfaces
Abstract Alkaline hydrogen evolution reaction (HER), consisted of Volmer and Heyrovsky/Tafel steps, requires extra energy for water dissociation, leading to more sluggish kinetics than acidic HER. Despite the advances in electrocatalysts, how to combine active sites to synergistically promote both steps and understand the underlying mechanism remain largely unexplored. Here, DFT calculations predict that NiO accelerates Volmer step while metallic Ni facilitates Heyrovsky/Tafel step. A facile strategy is thus developed to control Ni/NiO heterosurfaces in uniform and well-dispersed Ni-based nanocrystals, targeting both reaction steps synergistically. By systematically modulating the surface composition, we find that steering the elementary steps through tuning the Ni/NiO ratio can significantly enhance alkaline HER activity and Ni/NiO nanocrystals with a Ni/NiO ratio of 23.7% deliver the best activity, outperforming other state-of-the-art analogues. The results suggest that integrating bicomponent active sites for elementary steps is effective for promoting alkaline HER, but they have to be balanced.
more »
« less
- Award ID(s):
- 1828019
- PAR ID:
- 10119541
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- National Science Review
- ISSN:
- 2095-5138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrocatalytic water splitting presents an exciting opportunity to produce environmentally benign hydrogen fuel to power human activities. Earth abundant Ni5P4 has emerged as an efficient catalyst for the hydrogen evolution reaction (HER) and its activity can be enhanced by admixing synergistic metals to modify the surface affinity and consequently kinetics of HER. Computational studies suggest that the HER activity of Ni5P4 can be improved by Zn doping, causing a chemical pressure-like effect on Ni3 hollow sites. Herein, we report a facile colloidal route to produce Ni5-xZnxP4 nanocrystals (NCs) with control over structure, morphology, and composition and investigate their composition-dependent HER activity in alkaline solutions. Ni5-xZnxP4 NCs retain the hexagonal structure and solid spherical morphology of binary Ni5P4 NCs with a notable size increase from 9.2-28.5 nm for x = 0.00-1.27 compositions. Elemental maps affirm the homogeneous ternary alloy formation with no evidence of Zn segregation. Surface analysis of Ni5-xZnxP4 NCs indicates significant modulation of the surface polarization upon Zn incorporation resulting in a decrease in Niδ+ and an increase in Pδ- charge. Although all compositions followed a Volmer-Heyrovsky HER mechanism, the modulated surface polarization enhances the reaction kinetics producing lower Tafel slopes for Ni5-xZnxP4 NCs (82.5-101.9 mV/dec for x = 0.10-0.84) compared to binary Ni5P4 NCs (109.9 mV/dec). Ni5-xZnxP4 NCs showed higher HER activity with overpotentials of 131.6-193.8 mV for x = 0.02-0.84 in comparison to Ni5P4 NCs (218.1 mV) at a current density of -10 mA/cm2. Alloying with Zn increases the material’s stability with only a ~10% increase in overpotential for Ni4.49Zn0.51P4 NCs at -50 mA/cm2, whereas a ~33% increase was observed for Ni5P4 NCs. At current densities above -40 mA/cm2, bimetallic NCs with x = 0.10, 0.29, and 0.51 compositions outperformed the benchmark Pt/C catalyst, suggesting that hexagonal alloyed Ni5-xZnxP4 NCs are excellent candidates for practical applications that necessitate lower HER overpotentials at higher current densities.more » « less
-
Abstract The sluggish hydrogen oxidation reaction (HOR) under alkaline conditions has hindered the commercialization of hydroxide‐exchange membrane hydrogen fuel cells. A low‐cost Ni/NiO/C catalyst with abundant Ni/NiO interfacial sites was developed as a competent HOR electrocatalyst in alkaline media. Ni/NiO/C exhibits an HOR activity one order of magnitude higher than that of its parent Ni/C counterpart. Moreover, Ni/NiO/C also shows better stability and CO tolerance than commercial Pt/C in alkaline media, which renders it a very promising HOR electrocatalyst for hydrogen fuel cell applications. Density functional theory (DFT) calculations were also performed to shed light on the enhanced HOR performance of Ni/NiO/C; the DFT results indicate that both hydrogen and hydroxide achieve optimal binding energies at the Ni/NiO interface, resulting from the balanced electronic and oxophilic effects at the Ni/NiO interface.more » « less
-
The development of efficient and cost-effective catalysts for hydrogen evolution reaction (HER) is crucial for the advancement of electrochemical water splitting technology. Here, we report a novel synthetic method for the preparation of single-crystalline NiCoP nanorods with tunable aspect ratios using a CO-assisted, trioctylphosphine (TOP)-mediated approach. The introduction of CO gas at different temperatures allows for the control of the nanorod growth, resulting in various aspect ratios while maintaining a hexagonal crystal structure and a composition of 1:1 Ni/Co as NiCoP. Our results demonstrate that the NiCoP nanorods with higher aspect ratios exhibit improved HER activity and stability, with the highest aspect ratio nanorods showing the lowest overpotential and Tafel slope in both acidic and alkaline media. This study highlights the importance of controlling the size and morphology of bimetallic phosphide nanoparticles to optimize their catalytic activity for HER, providing new insights into the design and optimization of nanostructured catalysts for electrochemical water splitting applications.more » « less
-
null (Ed.)This paper reports a highly active and stable nonprecious metal electrocatalyst based on bimetallic nanoscale nickel molybdenum nitride developed for the hydrogen evolution reaction (HER). A composite of 7 nm Ni 2 Mo 3 N nanoparticles grown on nickel foam (Ni 2 Mo 3 N/NF) was prepared through a simple and economical synthetic method involving one-step annealing of Ni foam, MoCl 5 , and urea without a Ni precursor. The Ni 2 Mo 3 N/NF exhibits high activity with low overpotential ( η 10 of 21.3 mV and η 100 of 123.8 mV) and excellent stability for the HER, achieving one of the best performances among state-of-the-art transition metal nitride based catalysts in alkaline media. Supporting density functional theory (DFT) calculations indicate that N sites in Ni 2 Mo 3 N with a N–Mo coordination number of four have a hydrogen adsorption energy close to that of Pt and hence may be responsible for the enhanced HER performance.more » « less
An official website of the United States government
