skip to main content


Title: Low-dissipation edge currents without edge states
PAR ID:
10119828
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
99
Issue:
23
ISSN:
2469-9950; PRBMDO
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [ 18 ], ARKit [ 34 ] and others. One popular mechanism to achieve accurate indoor localization and a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Furthermore, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen when offloading to the cloud. In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 [ 50 ] as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant, which would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed split architecture. 
    more » « less
  2. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [11], ARKit [27] and others. One popular mechanism to achieve accurate indoor localization as well as a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Further, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading of some tasks without the large latencies seen when offloading to the cloud. In this paper, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closure, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant which would allow for deployment of other end applications that use Visual-SLAM. 
    more » « less
  3. The envisioned capabilities of mobile edge computing are predicated on a delivery infrastructure with capacity, ubiquity, robustness, and capabilities to serve a country-wide user base. In this paper, we present an empirical study of key aspects of mobile edge infrastructure toward the goal of understanding their current characteristics and identifying future deployments. We start by analyzing a dataset of over 4M cell tower locations in the US. We evaluate the geographic characteristics of deployments and highlight how locations correspond to population density in major metropolitan areas and in rural areas. We also show how deployments have been arranged along highways throughout the US. Our analysis highlight areas where new deployments would be warranted. Finally, we analyze how cell tower deployments correspond to current major data center locations and assess how micro servers might be deployed to improve response times and to better serve customers. 
    more » « less