The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system‐related traits, and leaf shape between
The integrated responses of biological systems to genetic and environmental variation result in substantial covariance in multiple phenotypes. The resultant pleiotropy, environmental effects, and genotype‐by‐environmental interactions (GxE) are foundational to our understanding of biology and genetics. Yet, the treatment of correlated characters, and the identification of the genes encoding functions that generate this covariance, has lagged. As a test case for analyzing the genetic basis underlying multiple correlated traits, we analyzed maize kernel ionomes from Intermated B73 x Mo17 (
- PAR ID:
- 10119998
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Plant Direct
- Volume:
- 3
- Issue:
- 5
- ISSN:
- 2475-4455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Mimulus laciniatus and a sympatric population of its close relativeM. guttatus . These three traits are probably involved inM. laciniatus’ adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them ‘magic traits’. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next‐generation sequencing, we generate denseSNP markers across the genome and map quantitative trait loci (QTL s) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to fewQTL of large effect including a highly pleiotropicQTL on chromosome 8. ThisQTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in otherMimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects. -
Abstract Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floral
UV patterning (i.e.UV ‘bulls‐eye nectar guides) among crop and wild accessions ofBrassica rapa . We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation inUV patterning between wild (commonly lackingUV patterns) and crop (commonly exhibitingUV patterns) accessions. Similar to the majority of crops, recombinant inbred lines (RIL s) derived from an oilseed crop ×WI fast‐plant®cross exhibitUV patterns, the size of which varies extensively among genotypes. InRIL s, we further observe strong statistical‐genetic andQTL correlations within petal morphological traits and within measurements of petalUV patterning; however, correlations between morphology andUV patterning are weak or nonsignificant, suggesting thatUV patterning is regulated and may evolve independently of overall petal size.HPLC analyses reveal a high concentration of sinapoyl glucose inUV ‐absorbing petal regions, which, in concert with physical locations ofUV ‐traitQTL s, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers withUV bulls‐eye patterns over those that lack patterns, validating the importance ofUV patterning in pollen‐limited populations ofB. rapa . -
Abstract While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using
AFLP and methylation‐sensitiveAFLP , we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat inSpartina alterniflora . InBorrichia frutescens , we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site‐specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation andDNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. -
Convergent evolution of root system architecture in two independently evolved lineages of weedy rice
Summary Root system architecture (
RSA ) is a critical aspect of plant growth and competitive ability. Here we used two independently evolved strains of weedy rice, a de‐domesticated form of rice, to study the evolution of weed‐associatedRSA traits and the extent to which they evolve through shared or different genetic mechanisms.We characterised 98 two‐dimensional and three‐dimensional
RSA traits in 671 plants representing parents and descendants of two recombinant inbred line populations derived from two weed × crop crosses. A random forest machine learning model was used to assess the degree to which root traits can predict genotype and the most diagnostic traits for doing so. We used quantitative trait locus (QTL) mapping to compare genetic architecture between the weed strains.The two weeds were distinguishable from the crop in similar and predictable ways, suggesting independent evolution of a ‘weedy’
RSA phenotype. Notably, comparativeQTL mapping revealed little evidence for shared underlying genetic mechanisms.Our findings suggest that despite the double bottlenecks of domestication and de‐domestication, weedy rice nonetheless shows genetic flexibility in the repeated evolution of weedy
RSA traits. Whereas the root growth of cultivated rice may facilitate interactions among neighbouring plants, the weedy rice phenotype may minimise below‐ground contact as a competitive strategy. -
Summary Genetic correlations among different components of phenotypes, especially those resulting from pleiotropy, can constrain or facilitate trait evolution. These factors could especially influence the evolution of traits that are functionally integrated, such as those comprising the flower. Indeed, pleiotropy is proposed as a main driver of repeated convergent trait transitions, including the evolution of phenotypically similar pollinator syndromes.
We assessed the role of pleiotropy in the differentiation of floral and other reproductive traits between two species –
Jaltomata sinuosa andJ. umbellata (Solanaceae) – that have divergent suites of floral traits consistent with bee and hummingbird pollination, respectively. To do so, we generated a hybrid population and examined the genetic architecture (trait segregation and quantitative trait locus (QTL ) distribution) underlying 25 floral and fertility traits.We found that most floral traits had a relatively simple genetic basis (few, predominantly additive,
QTL s of moderate to large effect), as well as little evidence of antagonistic pleiotropy (few trait correlations andQTL colocalization, particularly between traits of different classes). However, we did detect a potential case of adaptive pleiotropy among floral size and nectar traits.These mechanisms may have facilitated the rapid floral trait evolution observed within
Jaltomata , and may be a common component of rapid phenotypic change more broadly.