skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Astro2020 Science White Paper: Are Supernovae the Dust Producer in the Early Universe?
Whether supernovae are a significant source of dust has been a long-standing debate. The large quantities of dust observed in high-redshift galaxies raise a fundamental question as to the origin of dust in the Universe since stars cannot have evolved to the AGB dust-producing phase in high-redshift galaxies. In contrast, supernovae occur within several millions of years after the onset of star formation. This white paper focuses on dust formation in supernova ejecta with US-Extremely Large Telescope (ELT) perspective during the era of JWST and LSST.  more » « less
Award ID(s):
1817099
PAR ID:
10120206
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
arXiv e-prints
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dust temperature is an important property of the interstellar medium (ISM) of galaxies. It is required when converting (sub)millimetre broad-band flux to total infrared luminosity (LIR), and hence star formation rate, in high-redshift galaxies. However, different definitions of dust temperatures have been used in the literature, leading to different physical interpretations of how ISM conditions change with, e.g. redshift and star formation rate. In this paper, we analyse the dust temperatures of massive ($$M_{\rm star} \gt 10^{10}\, \mathrm{M}_{\odot }$$) $$z$$ = 2–6 galaxies with the help of high-resolution cosmological simulations from the Feedback in Realistic Environments (fire) project. At $$z$$ ∼ 2, our simulations successfully predict dust temperatures in good agreement with observations. We find that dust temperatures based on the peak emission wavelength increase with redshift, in line with the higher star formation activity at higher redshift, and are strongly correlated with the specific star formation rate. In contrast, the mass-weighted dust temperature, which is required to accurately estimate the total dust mass, does not strongly evolve with redshift over $$z$$ = 2–6 at fixed IR luminosity but is tightly correlated with LIR at fixed $$z$$. We also analyse an ‘equivalent’ dust temperature for converting (sub)millimetre flux density to total IR luminosity, and provide a fitting formula as a function of redshift and dust-to-metal ratio. We find that galaxies of higher equivalent (or higher peak) dust temperature (‘warmer dust’) do not necessarily have higher mass-weighted temperatures. A ‘two-phase’ picture for interstellar dust can explain the different scaling relations of the various dust temperatures. 
    more » « less
  2. null (Ed.)
    ABSTRACT The observed empirical relation between the star formation rates (SFR) of low-redshift galaxies and their radio continuum luminosity offers a potential means of measuring SFR in high-redshift galaxies that is unaffected by dust obscuration. In this study, we make the first test for redshift evolution in the SFR-radio continuum relation at high redshift using dust-corrected H α SFR. Our sample consists of 178 galaxies from the MOSFIRE Deep Evolution Field (MOSDEF) Survey at 1.4 < z < 2.6 with rest-frame optical spectroscopy and deep 1.5 GHz radio continuum observations from the Karl G. Jansky Very Large Array (VLA) GOODS North field. Using a stacking analysis, we compare the observed radio continuum luminosities with those predicted from the dust-corrected H α SFR assuming a range of z ∼ 0 relations. We find no evidence for a systematic evolution with redshift, when stacking the radio continuum as a function of dust-corrected H α SFR and when stacking both optical spectroscopy and radio continuum as a function of stellar mass. We conclude that locally calibrated relations between SFR and radio continuum luminosity remain valid out to z ∼ 2. 
    more » « less
  3. null (Ed.)
    Context. The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. Aims. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred million years; and (ii) the decrease in sMdust at a later time. Methods. We fitted spectral energy distribution of dwarf galaxies and LBGs with the “Code Investigating GALaxies Emission”, through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Results. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ≈100 Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows. 
    more » « less
  4. ABSTRACT The large quantities of dust that have been found in a number of high-redshift galaxies have led to suggestions that core-collapse supernovae (CCSNe) are the main sources of their dust and have motivated the measurement of the dust masses formed by local CCSNe. For Cassiopeia A (Cas A), an oxygen-rich remnant of a Type IIb CCSN, a dust mass of 0.6–1.1 M⊙ has already been determined by two different methods, namely (a) from its far-infrared spectral energy distribution and (b) from analysis of the red–blue emission line asymmetries in its integrated optical spectrum. We present a third, independent, method for determining the mass of dust contained within Cas A. This compares the relative fluxes measured in similar apertures from [O iii] far-infrared and visual-region emission lines, taking into account foreground dust extinction, in order to determine internal dust optical depths, from which corresponding dust masses can be obtained. Using this method, we determine a dust mass within Cas A of at least 0.99$$^{+0.10}_{-0.09}$$ M⊙. 
    more » « less
  5. Abstract Supernovae (SNe) may be the dominant channel by which dust grains accumulate in galaxies during the first Gyr of cosmic time as formation channels important for lower-redshift galaxies, e.g., asymptotic giant branch stars and grain growth, may not have had sufficient time to take over. SNe produce fewer small grains, leading to a flatter attenuation law. In this work, we fit observations of 138 spectroscopically confirmedz > 6 galaxies adopting standard spectral energy distribution (SED) modeling assumptions and compare standard attenuation law prescriptions to a flat attenuation law. Compared to SMC dust, flat attenuation close to what may be expected from dust produced in SNe yields up to 0.5 mag higherAVand 0.4 dex larger stellar masses. It also finds better fits to the rest-frame UV photometry with lower χ UV 2 , allowing the observed UV luminosities taken from the models to be fainter by 0.2 dex on average. The systematically fainter observed UV luminosities for fixed observed photometry could help resolve current tension between the ionizing photon production implied by JWST observations and the redshift evolution of the neutral hydrogen fraction. Given these systematic effects and the physical constraint of cosmic time itself, fairly flat attenuation laws that could represent the properties of dust grains produced by SNe should be a standard consideration in fitting to the SEDs ofz > 6 galaxies. 
    more » « less