skip to main content

Title: Carbides and Nitrides of Zirconium and Hafnium
Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions. New methods, such as electrical pulse heating and laser melting, can fill the gaps in experimental data and validate ab initio predictions.  more » « less
Award ID(s):
1835848 1835939 2015852
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tantalum carbide (TaC) and hafnium carbide (HfC) have some of the highest melting temperatures among the transition metal carbides, borides, and nitrides, making them promising materials for high‐speed flight and high‐temperature structural applications. Solid solutions of TaC and HfC are of particular interest due to their enhanced oxidation resistance compared to pure TaC or HfC. This study looks at the effect of Hf content on the oxidation resistance of TaC–HfC sintered specimens. Five compositions are fabricated into bulk samples using spark plasma sintering (2173 K, 50 MPa, 10 min hold). Oxidation behavior of a subset of the compositions (100 vol% TaC, 80 vol% TaC + 20 vol% HfC, and 50 vol% TaC + 50 vol% HfC) is analyzed using an oxyacetylene torch for 60 s. The TaC–HfC samples exhibit a reduction in the oxide scale thickness and the mass ablation rate with increasing HfC content. The improved oxidation resistance can be attributed to the formation of a Hf6Ta2O17phase. This phase enhances oxidation resistance by reducing oxygen diffusion and serving as a protective layer for the unoxidized material. The superior oxidation resistance of TaC–HfC samples makes these materials strong contenders for the development of high‐speed flight coatings.

    more » « less
  2. Abstract

    The hafnium‐rich portion of the of the hafnium‐nitrogen phase diagram is dominated by a substoichiometric rocksalt HfN1‐x, the ζ‐Hf4N3−x, the η‐Hf3N2−x, and the elemental Hf phase. The zeta and eta nitride phases have a close packed metal atom stacking sequence but their nitrogen atom ordering has yet to be concretely identified. With respect to the composition of these phases, recent computational studies of their phase stability using density functional theory (DFT) are not in agreement with reported experimental observations. In this work, we re‐examine the phase stability of the zeta and eta phases using DFT combined with enumerated searches using the known metal atom stacking sequences of these phases but with variable carbon concentration and ordering. We have found new structures for the zeta and eta phases that are now in better agreement with experimental findings. Furthermore, we report a new eta phase,‐Hf12N7, which lies on the convex hull and has a nitrogen atom ordering that is substantially different from the zeta phase. This work also demonstrates the importance of configurational entropy in dictating the finite temperature phase diagrams in this system.

    more » « less
  3. Abstract

    Structure and thermodynamics of pure cubic ZrO2and HfO2were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automatedab initiomolecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2and HfO2are similar and reach (4 ± 1)·10−5/K from experiment and (5 ± 1)·10−5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2is an excellent oxygen conductor, perhaps even better than YSZ.

    more » « less
  4. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared. 
    more » « less
  5. Thorium was a part of energy infrastructure in the 19th century due to the refractory and electronic properties of its dioxide. It will be a part of future energy infrastructure as the most abundant energy reserve based on nuclear fission. This paper discusses the solid-state chemistry of the monoxides and related rocksalt phases of thorium and the rare earths, both at atmospheric and at high pressure. The existence of solid thorium monoxide was first suggested more than 100 years ago; however, it was never obtained in bulk and has been studied mostly theoretically. Monoxides of lanthanides from Eu to Ho are ferromagnetic semiconductors sought for spintronics and were studied in thin films. La to Sm metallic monoxides were synthesized in bulk at pressures below 5 GPa. Recently, ThO formation in thin films has been reported and the stability of bulk ThO at high pressure was theoretically predicted based on first principles computations at 0 K. New ab initio computations were performed accounting for temperature effects up to 1000 K using lattice dynamics in the quasi-harmonic approximation. New computational results confirm the stabilization of pure ThO above 30 GPa and suggest the possibility of high-pressure synthesis of (Th,Nd)O at 1000 K and 5 GPa. 
    more » « less