skip to main content


Title: OVERCOMING CATASTROPHIC FORGETTING FOR CONTINUAL LEARNING VIA MODEL ADAPTATION
Learning multiple tasks sequentially is important for the development of AI and lifelong learning systems. However, standard neural network architectures suffer from catastrophic forgetting which makes it difficult for them to learn a sequence of tasks. Several continual learning methods have been proposed to address the problem. In this paper, we propose a very different approach, called Parameter Generation and Model Adaptation (PGMA), to dealing with the problem. The proposed approach learns to build a model, called the solver, with two sets of parameters. The first set is shared by all tasks learned so far and the second set is dynamically generated to adapt the solver to suit each test example in order to classify it. Extensive experiments have been carried out to demonstrate the effectiveness of the proposed approach.  more » « less
Award ID(s):
1838770
PAR ID:
10120468
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning approaches have recently been applied to the study of various problems in physics. Most of these studies are focused on interpreting the data generated by conventional numerical methods or the data on an existing experimental database. An interesting question is whether it is possible to use a machine learning approach, in particular a neural network, for solving the many-body problem. In this paper, we present a neural network solver for the single impurity Anderson model, the paradigm of an interacting quantum problem in small clusters. We demonstrate that the neural-network-based solver provides quantitative accurate results for the spectral function as compared to the exact diagonalization method. This opens the possibility of utilizing the neural network approach as an impurity solver for other many-body numerical approaches, such as the dynamical mean field theory. 
    more » « less
  2. In recent years, neural networks have demonstrated an outstanding ability to achieve complex learning tasks across various domains. However, they suffer from the "catastrophic forgetting" problem when they face a sequence of learning tasks, where they forget the old ones as they learn new tasks. This problem is also highly related to the "stability-plasticity dilemma". The more plastic the network, the easier it can learn new tasks, but the faster it also forgets previous ones. Conversely, a stable network cannot learn new tasks as fast as a very plastic network. However, it is more reliable to preserve the knowledge it has learned from the previous tasks. Several solutions have been proposed to overcome the forgetting problem by making the neural network parameters more stable, and some of them have mentioned the significance of dropout in continual learning. However, their relationship has not been sufficiently studied yet. In this paper, we investigate this relationship and show that a stable network with dropout learns a gating mechanism such that for different tasks, different paths of the network are active. Our experiments show that the stability achieved by this implicit gating plays a very critical role in leading to performance comparable to or better than other involved continual learning algorithms to overcome catastrophic forgetting. 
    more » « less
  3. Modern machine learning models require a large amount of labeled data for training to perform well. A recently emerging paradigm for reducing the reliance of large model training on massive labeled data is to take advantage of abundantly available labeled data from a related source task to boost the performance of the model in a desired target task where there may not be a lot of data available. This approach, which is called transfer learning, has been applied successfully in many application domains. However, despite the fact that many transfer learning algorithms have been developed, the fundamental understanding of "when" and "to what extent" transfer learning can reduce sample complexity is still limited. In this work, we take a step towards foundational understanding of transfer learning by focusing on binary classification with linear models and Gaussian features and develop statistical minimax lower bounds in terms of the number of source and target samples and an appropriate notion of similarity between source and target tasks. To derive this bound, we reduce the transfer learning problem to hypothesis testing via constructing a packing set of source and target parameters by exploiting Gilbert-Varshamov bound, which in turn leads to a lower bound on sample complexity. We also evaluate our theoretical results by experiments on real data sets. 
    more » « less
  4. Recent techniques that integrate solver layers into Deep Neural Networks (DNNs) have shown promise in bridging a long-standing gap between inductive learning and symbolic reasoning techniques. In this paper we present a set of techniques for integrating Satisfiability Modulo Theories (SMT) solvers into the forward and backward passes of a deep network layer, called SMTLayer. Using this approach, one can encode rich domain knowledge into the network in the form of mathematical formulas. In the forward pass, the solver uses symbols produced by prior layers, along with these formulas, to construct inferences; in the backward pass, the solver informs updates to the network, driving it towards representations that are compatible with the solver’s theory. Notably, the solver need not be differentiable. We implement SMTLayer as a Pytorch module, and our empirical results show that it leads to models that 1) require fewer training samples than conventional models, 2) that are robust to certain types of covariate shift, and 3) that ultimately learn representations that are consistent with symbolic knowledge, and thus naturally interpretable. 
    more » « less
  5. In this paper we propose a new framework—MoViLan (Modular Vision and Language) for execution of visually grounded natural language instructions for day to day indoor household tasks. While several data-driven, end-to-end learning frameworks have been proposed for targeted navigation tasks based on the vision and language modalities, performance on recent benchmark data sets revealed the gap in developing comprehensive techniques for long horizon, compositional tasks (involving manipulation and navigation) with diverse object categories, realistic instructions and visual scenarios with non reversible state changes. We propose a modular approach to deal with the combined navigation and object interaction problem without the need for strictly aligned vision and language training data (e.g., in the form of expert demonstrated trajectories). Such an approach is a significant departure from the traditional end-to-end techniques in this space and allows for a more tractable training process with separate vision and language data sets. Specifically, we propose a novel geometry-aware mapping technique for cluttered indoor environments, and a language understanding model generalized for household instruction following. We demonstrate a significant increase in success rates for long horizon, compositional tasks over recent works on the recently released benchmark data set -ALFRED. 
    more » « less