skip to main content


Title: The SLUGGS survey: measuring globular cluster ages using both photometry and spectroscopy
ABSTRACT

Globular cluster ages provide both an important test of models of globular cluster formation and a powerful method to constrain the assembly history of galaxies. Unfortunately, measuring the ages of unresolved old stellar populations has proven challenging. Here, we present a novel technique that combines optical photometry with metallicity constraints from near-infrared spectroscopy in order to measure ages. After testing the method on globular clusters in the Milky Way and its satellite galaxies, we apply our technique to three massive early-type galaxies using data from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey. The three SLUGGS galaxies and the Milky Way show dramatically different globular cluster age and metallicity distributions, with NGC 1407 and the Milky Way showing mostly old globular clusters, while NGC 3115 and NGC 3377 show a range of globular ages. This diversity implies different galaxy formation histories and that the globular cluster optical colour–metallicity relation is not universal as is commonly assumed in globular cluster studies. We find a correlation between the median age of the metal-rich globular cluster populations and the age of the field star populations, in line with models where globular cluster formation is a natural outcome of high-intensity star formation.

 
more » « less
NSF-PAR ID:
10120478
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 491-501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems.

     
    more » « less
  2. ABSTRACT

    We present a suite of galaxy formation simulations that directly model star cluster formation and disruption. Starting from a model previously developed by our group, here we introduce several improvements to the prescriptions for cluster formation and feedback, then test these updates using a large suite of cosmological simulations of Milky Way mass galaxies. We perform a differential analysis with the goal of understanding how each of the updates affects star cluster populations. Two key parameters are the momentum boost of supernova feedback fboost and star formation efficiency per free-fall time ϵff. We find that fboost has a strong influence on the galactic star formation rate, with higher values leading to less star formation. The efficiency ϵff does not have a significant impact on the global star formation rate, but dramatically changes cluster properties, with increasing ϵff leading to a higher maximum cluster mass, shorter age spread of stars within clusters, and higher integrated star formation efficiencies. We also explore the redshift evolution of the observable cluster mass function, finding that most massive clusters have formed at high redshift z > 4. Extrapolation of cluster disruption to z = 0 produces good agreement with both the Galactic globular cluster mass function and age–metallicity relation. Our results emphasize the importance of using small-scale properties of galaxies to calibrate subgrid models of star cluster formation and feedback.

     
    more » « less
  3. ABSTRACT

    The properties of young star clusters formed within a galaxy are thought to vary in different interstellar medium conditions, but the details of this mapping from galactic to cluster scales are poorly understood due to the large dynamic range involved in galaxy and star cluster formation. We introduce a new method for modelling cluster formation in galaxy simulations: mapping giant molecular clouds (GMCs) formed self-consistently in a FIRE-2 magnetohydrodynamic galaxy simulation on to a cluster population according to a GMC-scale cluster formation model calibrated to higher resolution simulations, obtaining detailed properties of the galaxy’s star clusters in mass, metallicity, space, and time. We find $\sim 10{{\ \rm per\ cent}}$ of all stars formed in the galaxy originate in gravitationally bound clusters overall, and this fraction increases in regions with elevated Σgas and ΣSFR, because such regions host denser GMCs with higher star formation efficiency. These quantities vary systematically over the history of the galaxy, driving variations in cluster formation. The mass function of bound clusters varies – no single Schechter-like or power-law distribution applies at all times. In the most extreme episodes, clusters as massive as 7 × 106 M⊙ form in massive, dense clouds with high star formation efficiency. The initial mass–radius relation of young star clusters is consistent with an environmentally dependent 3D density that increases with Σgas and ΣSFR. The model does not reproduce the age and metallicity statistics of old ($\gt 11\rm Gyr$) globular clusters found in the Milky Way, possibly because it forms stars more slowly at z > 3.

     
    more » « less
  4. ABSTRACT

    Using early-release data from the JWST, Mowla et al. and Claeyssens et al. recently measured various properties for gravitationally lensed compact sources (‘sparkles’) around the ‘Sparkler’ galaxy at a redshift of 1.378 (a look-back time of 9.1 Gyr). Here, we focus on the Mowla et al. as they were able to break the age-metallicity degeneracy and derive independent ages, metallicities, and extinctions for each source. They identified five metal-rich, old Globular cluster (GC) candidates (with formation ages up to ∼13 Gyr). We examine the age–metallicity relation (AMR) for the GC candidates and other Sparkler compact sources. The Sparkler galaxy, which has a current estimated stellar mass of 109 M⊙, is compared to the Large Magellanic Cloud (LMC), the disrupted dwarf galaxy Gaia–Enceladus and the Milky Way (MW). The Sparkler galaxy appears to have undergone very rapid chemical enrichment in the first few hundred Myr after formation, with its GC candidates similar to those of the MW’s metal-rich subpopulation. We also compare the Sparkler to theoretical AMRs and formation ages from the E-MOSAICS simulation, finding the early formation age of its GCs to be in some tension with these predictions for MW-like galaxies. The metallicity of the Sparkler’s star-forming regions are more akin to a galaxy of stellar mass ≥ 1010.5 M⊙, that is, at the top end of the expected mass growth over 9.1 Gyr of cosmic time. We conclude that the Sparkler galaxy may represent a progenitor of a MW-like galaxy, even including the ongoing accretion of a satellite galaxy.

     
    more » « less
  5. ABSTRACT

    Detailed understanding of the formation and evolution of globular clusters (GCs) has been recently advanced through a combination of numerical simulations and analytical models. We employ a state-of-the-art model to create a comprehensive catalogue of simulated clusters in three Milky Way (MW) and three Andromeda (M31) analogue galaxies. Our catalogue aims to connect the chemical and kinematic properties of GCs to the assembly histories of their host galaxies. We apply the model to a selected sample of simulated galaxies that closely match the virial mass, circular velocity profile, and defining assembly events of the MW and M31. The resulting catalogue has been calibrated to successfully reproduce key characteristics of the observed GC systems, including total cluster mass, mass function, metallicity distribution, radial profile, and velocity dispersion. We find that clusters in M31 span a wider range of age and metallicity, relative to the MW, possibly due to M31’s recent major merger. Such a merger also heated up the in-situ GC population to higher orbital energy and introduced a large number of ex-situ clusters at large radii. Understanding the impacts of galaxy mergers and accretion on the GC populations is crucial for uncovering the galaxy assembly histories.

     
    more » « less