- Award ID(s):
- 1664061
- NSF-PAR ID:
- 10120481
- Date Published:
- Journal Name:
- Gateways 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Science gateways, also known as advanced web portals, virtual research environments, and more, have changed the face of research and scholarship over the last two decades. Scholars world-wide leverage science gateways for a wide variety of individual research endeavors spanning diverse scientific fields. Evaluating the value of a given gateway to its constituent community is critical in obtaining the financial and human resources to sustain gateway operations. Accordingly, those who run gateways must routinely measure and communicate impact. Just as gateways are varied, their success metrics vary as well. In this survey paper, a variety of different gateways briefly share their approaches.more » « less
-
Science gateways, also known as advanced web portals, virtual research environments, and more, have changed the face of research and scholarship over the last two decades. Scholars world-wide leverage science gateways for a wide variety of individual research endeavors spanning diverse scientific fields. Evaluating the value of a given gateway to its constituent community is critical in obtaining the financial and human resources to sustain gateway operations. Accordingly, those who run gateways must routinely measure and communicate impact. Just as gateways are varied, their success metrics vary as well. In this survey paper, a variety of different gateways briefly share their approaches.more » « less
-
Summary Scholars worldwide leverage science gateways/virtual research environments (VREs) for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this article, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of, for example, their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next‐generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE‐IG) of the Research Data Alliance. Thus, community‐driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations.
-
Science gateways have been a crucial tool that lowers the barriers of computer language proficiency for researchers and scientists alike to implement digital tools to further their research agendas. However, gateways remain somewhat esoteric and difficult to use for many potential users. A chatbot has been proposed as a solution to aid gateway users and for the improvement of gateway usability. Via in-depth interviews with 10 medical professionals, we investigated the challenges they faced when extracting data, namely, slow speed, limited scope, and mixed quality of data. We suggest future gateway developments to address the issues that medical professionals face when searching for publications and data. Findings suggest that gateways could serve practitioners (i.e., clinicians, healthcare providers in this case), beyond the original vision for research and education. Moreover, gateway projects could consider conducting similar market research interviews to better understand the work context (including challenges) faced by the intended users of specific gateways.more » « less
-
Building science gateways for humanities content poses new challenges to the science gateway community. Compared with science gateways devoted to scientific content, humanities-related projects usually require 1) processing data in various formats, such as text, image, video, etc., 2) constant public access from a broad audience, and therefore 3) reliable security, ideally with low maintenance. Many traditional science gateways are monolithic in design, which makes them easier to write, but they can be computationally inefficient when integrated with numerous scientific packages for data capture and pipeline processing. Since these packages tend to be single-threaded or nonmodular, they can create traffic bottlenecks when processing large numbers of requests. Moreover, these science gateways are usually challenging to resume development on due to long gaps between funding periods and the aging of the integrated scientific packages. In this paper, we study the problem of building science gateways for humanities projects by developing a service-based architecture, and present two such science gateways: the Moving Image Research Collections (MIRC) – a science gateway focusing on image analysis for digital surrogates of historical motion picture film, and SnowVision - a science gateway for studying pottery fragments in southeastern North America. For each science gateway, we present an overview of the background of the projects, and some unique challenges in their design and implementation. These two science gateways are deployed on XSEDE’s Jetstream academic clouding computing resource and are accessed through web interfaces. Apache Airavata middleware is used to manage the interactions between the web interface and the deep-learning-based (DL) backend service running on the Bridges graphics processing unit (GPU) cluster.more » « less