skip to main content


Title: Ensuring electronic medical record simulation through better training, modeling, and evaluation
Abstract Objective

Electronic medical records (EMRs) can support medical research and discovery, but privacy risks limit the sharing of such data on a wide scale. Various approaches have been developed to mitigate risk, including record simulation via generative adversarial networks (GANs). While showing promise in certain application domains, GANs lack a principled approach for EMR data that induces subpar simulation. In this article, we improve EMR simulation through a novel pipeline that (1) enhances the learning model, (2) incorporates evaluation criteria for data utility that informs learning, and (3) refines the training process.

Materials and Methods

We propose a new electronic health record generator using a GAN with a Wasserstein divergence and layer normalization techniques. We designed 2 utility measures to characterize similarity in the structural properties of real and simulated EMRs in the original and latent space, respectively. We applied a filtering strategy to enhance GAN training for low-prevalence clinical concepts. We evaluated the new and existing GANs with utility and privacy measures (membership and disclosure attacks) using billing codes from over 1 million EMRs at Vanderbilt University Medical Center.

Results

The proposed model outperformed the state-of-the-art approaches with significant improvement in retaining the nature of real records, including prediction performance and structural properties, without sacrificing privacy. Additionally, the filtering strategy achieved higher utility when the EMR training dataset was small.

Conclusions

These findings illustrate that EMR simulation through GANs can be substantially improved through more appropriate training, modeling, and evaluation criteria.

 
more » « less
NSF-PAR ID:
10120676
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the American Medical Informatics Association
Volume:
27
Issue:
1
ISSN:
1527-974X
Page Range / eLocation ID:
p. 99-108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Identifying a patient's disease/health status from electronic medical records is a frequently encountered task in electronic health records (EHR) related research, and estimation of a classification model often requires a benchmark training data with patients' known phenotype statuses. However, assessing a patient's phenotype is costly and labor intensive, hence a proper selection of EHR records as a training set is desired. We propose a procedure to tailor the best training subsample with limited sample size for a classification model, minimizing its mean-squared phenotyping/classification error (MSE). Our approach incorporates “positive only” information, an approximation of the true disease status without false alarm, when it is available. In addition, our sampling procedure is applicable for training a chosen classification model which can be misspecified. We provide theoretical justification on its optimality in terms of MSE. The performance gain from our method is illustrated through simulation and a real-data example, and is found often satisfactory under criteria beyond MSE.

     
    more » « less
  2. Summary

    Clinicians and patients must make treatment decisions at a series of key decision points throughout disease progression. A dynamic treatment regime is a set of sequential decision rules that return treatment decisions based on accumulating patient information, like that commonly found in electronic medical record (EMR) data. When applied to a patient population, an optimal treatment regime leads to the most favorable outcome on average. Identifying optimal treatment regimes that maximize residual life is especially desirable for patients with life-threatening diseases such as sepsis, a complex medical condition that involves severe infections with organ dysfunction. We introduce the residual life value estimator (ReLiVE), an estimator for the expected value of cumulative restricted residual life under a fixed treatment regime. Building on ReLiVE, we present a method for estimating an optimal treatment regime that maximizes expected cumulative restricted residual life. Our proposed method, ReLiVE-Q, conducts estimation via the backward induction algorithm Q-learning. We illustrate the utility of ReLiVE-Q in simulation studies, and we apply ReLiVE-Q to estimate an optimal treatment regime for septic patients in the intensive care unit using EMR data from the Multiparameter Intelligent Monitoring Intensive Care database. Ultimately, we demonstrate that ReLiVE-Q leverages accumulating patient information to estimate personalized treatment regimes that optimize a clinically meaningful function of residual life.

     
    more » « less
  3. Abstract

    The success of foundation models such as ChatGPT and AlphaFold has spurred significant interest in building similar models for electronic medical records (EMRs) to improve patient care and hospital operations. However, recent hype has obscured critical gaps in our understanding of these models’ capabilities. In this narrative review, we examine 84 foundation models trained on non-imaging EMR data (i.e., clinical text and/or structured data) and create a taxonomy delineating their architectures, training data, and potential use cases. We find that most models are trained on small, narrowly-scoped clinical datasets (e.g., MIMIC-III) or broad, public biomedical corpora (e.g., PubMed) and are evaluated on tasks that do not provide meaningful insights on their usefulness to health systems. Considering these findings, we propose an improved evaluation framework for measuring the benefits of clinical foundation models that is more closely grounded to metrics that matter in healthcare.

     
    more » « less
  4. Abstract

    Over the past decade, there has been growing enthusiasm for using electronic medical records (EMRs) for biomedical research. Quantile regression estimates distributional associations, providing unique insights into the intricacies and heterogeneity of the EMR data. However, the widespread nonignorable missing observations in EMR often obscure the true associations and challenge its potential for robust biomedical discoveries. We propose a novel method to estimate the covariate effects in the presence of nonignorable missing responses under quantile regression. This method imposes no parametric specifications on response distributions, which subtly uses implicit distributions induced by the corresponding quantile regression models. We show that the proposed estimator is consistent and asymptotically normal. We also provide an efficient algorithm to obtain the proposed estimate and a randomly weighted bootstrap approach for statistical inferences. Numerical studies, including an empirical analysis of real-world EMR data, are used to assess the proposed method's finite-sample performance compared to existing literature.

     
    more » « less
  5. Drug‐drug interactions (DDIs) are a common cause of adverse drug events (ADEs). The electronic medical record (EMR) database and the FDA's adverse event reporting system (FAERS) database are the major data sources for mining and testing the ADE associated DDI signals. Most DDI data mining methods focus on pair‐wise drug interactions, and methods to detect high‐dimensional DDIs in medical databases are lacking. In this paper, we propose 2 novel mixture drug‐count response models for detecting high‐dimensional drug combinations that induce myopathy. The “count” indicates the number of drugs in a combination. One model is called fixed probability mixture drug‐count response model with a maximum risk threshold (FMDRM‐MRT). The other model is called count‐dependent probability mixture drug‐count response model with a maximum risk threshold (CMDRM‐MRT), in which the mixture probability is count dependent. Compared with the previous mixture drug‐count response model (MDRM) developed by our group, these 2 new models show a better likelihood in detecting high‐dimensional drug combinatory effects on myopathy. CMDRM‐MRT identified and validated (54; 374; 637; 442; 131) 2‐way to 6‐way drug interactions, respectively, which induce myopathy in both EMR and FAERS databases. We further demonstrate FAERS data capture much higher maximum myopathy risk than EMR data do. The consistency of 2 mixture models' parameters and local false discovery rate estimates are evaluated through statistical simulation studies.

     
    more » « less