skip to main content


Title: The environment of H i-bearing ultra-diffuse galaxies in the ALFALFA survey
ABSTRACT

We explore the environment of 252 H i-bearing ultra-diffuse galaxies (HUDs) from the 100 per cent ALFALFA survey catalogue in an attempt to constrain their formation mechanism. We select sources from ALFALFA with surface brightnesses, magnitudes, and radii consistent with other samples of ultra-diffuse galaxies (UDGs) without restrictions on their isolation or environment, more than doubling the previously reported ALFALFA sample. We quantify the galactic environment of HUDs using several metrics, including nth nearest neighbour, tidal influence, membership in a group/cluster, and distance from nearest group/cluster or filament. We find that HUDs inhabit the same environments as other samples of H i-selected galaxies and that they show no environmental preference in any metric. We suggest that these results are consistent with a picture of the extreme properties of HUDs being driven by internal mechanisms and that they are largely unperturbed by environmental impacts. While environmental effects may be necessary to convert HUDs into gas-poor cluster UDGs, these effects are not required for diffuse galaxies to exist in the first place.

 
more » « less
NSF-PAR ID:
10120780
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 566-577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a pilot study of the atomic neutral hydrogen gas (H i) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey to search for H i in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one H i detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are H i-free. We show the overall distribution of SMUDGes UDG candidates on the size–luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their H i content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the H i content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario.

     
    more » « less
  2. Abstract

    We present results from an optical search for Local Group dwarf galaxy candidates associated with the Ultra-Compact High Velocity Clouds (UCHVCs) discovered by the ALFALFA neutral hydrogen survey. The ALFALFA UCHVCs are isolated, compact Hiclouds with projected sizes, velocities, and estimated Himasses that suggest they may be nearby dwarf galaxies, but that have no clear counterpart in existing optical survey data. We observed 26 UCHVCs with the WIYN 3.5 m telescope and One Degree Imager (ODI) in two broadband filters and searched the images for resolved stars with properties that match those of stars in typical dwarf galaxies at distances <2.5 Mpc. We identify one promising dwarf galaxy candidate at a distance of ∼570 kpc associated with the UCHVC AGC 268071, and five other candidates that may deserve additional follow-up. We carry out a detailed analysis of ODI imaging of a UCHVC that is close in both projected distance and radial velocity to the outer-halo Milky Way globular cluster Pal 3. We also use our improved detection methods to reanalyze images of five UCHVCs that were found to have possible optical counterparts during the first phase of the project, and confirm the detection of a possible stellar counterpart to the UCHVC AGC 249525 at an estimated distance of ∼2 Mpc. We compare the optical and Hiproperties of the dwarf galaxy candidates to the results from recent theoretical simulations that model satellite galaxy populations in group environments, as well as to the observed properties of galaxies in and around the Local Group.

     
    more » « less
  3. Abstract

    We present Hubble Space Telescope imaging of 14 gas-rich, low-surface-brightness galaxies in the field at distances of 25–36 Mpc, with mean effective radii andg-band central surface brightnesses of 1.9 kpc and 24.2 mag arcsec−2. Nine meet the standard criteria to be considered ultra-diffuse galaxies (UDGs). An inspection of point-like sources brighter than the turnover magnitude of the globular cluster luminosity function and within twice the half-light radii of each galaxy reveals that, unlike those in denser environments, gas-rich, field UDGs host very few old globular clusters (GCs). Most of the targets (nine) have zero candidate GCs, with the remainder having one or two candidates each. These findings are broadly consistent with expectations for normal dwarf galaxies of similar stellar mass. This rules out gas-rich, field UDGs as potential progenitors of the GC-rich UDGs that are typically found in galaxy clusters. However, some in galaxy groups may be directly accreted from the field. In line with other recent results, this strongly suggests that there must be at least two distinct formation pathways for UDGs, and that this subpopulation is simply an extreme low surface brightness extension of the underlying dwarf galaxy population. The root cause of their diffuse stellar distributions remains unclear, but the formation mechanism appears to only impact the distribution of stars (and potentially dark matter), without strongly impacting the distribution of neutral gas, the overall stellar mass, or the number of GCs.

     
    more » « less
  4. Abstract We present new redshift measurements for 19 candidate ultra-diffuse galaxies (UDGs) from the Systematically Measuring Ultra-Diffuse Galaxies (SMUDGes) survey after conducting a long-slit spectroscopic follow-up campaign on 23 candidates with the Large Binocular Telescope. We combine these results with redshift measurements from other sources for 29 SMUDGes and 20 non-SMUDGes candidate UDGs. Together, this sample yields 44 spectroscopically confirmed UDGs ( r e ≥ 1.5 kpc and μ g (0) ≥ 24 mag arcsec −2 within uncertainties) and spans cluster and field environments, with all but one projected on the Coma cluster and environs. We find no statistically significant differences in the structural parameters of cluster and noncluster confirmed UDGs, although there are hints of differences among the axis ratio distributions. Similarly, we find no significant structural differences among those in locally dense or sparse environments. However, we observe a significant difference in color with respect to projected clustercentric radius, confirming trends observed previously in statistical UDG samples. This trend strengthens further when considering whether UDGs reside in either cluster or locally dense environments, suggesting starkly different star formation histories for UDGs residing in high- and low-density environments. Of the 16 large ( r e ≥ 3.5 kpc) UDGs in our sample, only one is a field galaxy that falls near the early-type galaxy red sequence. No other field UDGs found in low-density environments fall near the red sequence. This finding, in combination with our detection of Galaxy Evolution Explorer NUV flux in nearly half of the UDGs in sparse environments, suggests that field UDGs are a population of slowly evolving galaxies. 
    more » « less
  5. Abstract

    Ultra-diffuse galaxies (UDGs) are both extreme products of galaxy evolution and extreme environments in which to test our understanding of star formation. In this work, we contrast the spatially resolved star formation activity of a sample of 22 Hi-selected UDGs and 35 low-mass galaxies from the NASA Sloan Atlas (NSA) catalog within 120 Mpc. We employ a new joint spectral energy distribution fitting method to compute star formation rate and stellar mass surface density maps that leverage the high spatial resolution optical imaging data of the Hyper Suprime-Cam Subaru Strategic Program and the UV coverage of the Galaxy Evolution Explorer, along with Hiradial profiles estimated from a subset of galaxies that have spatially resolved Himaps. We find that UDGs have low star formation efficiencies as a function of their atomic gas down to scales of 500 pc. We additionally find that the stellar mass-weighted sizes of our UDG sample are unremarkable when considered as a function of their Himass—their stellar sizes are comparable to NSA dwarfs at fixed Himass. This is a natural result in the picture where UDGs are forming stars normally, but at low efficiencies. We compare our results to predictions from contemporary models of galaxy formation, and find in particular that our observations are difficult to reproduce in models where UDGs undergo stellar expansion due to vigorous star formation feedback should bursty star formation be required down toz= 0.

     
    more » « less