skip to main content


Title: 2D-Galactic chemical evolution: the role of the spiral density wave
ABSTRACT

We present a 2D chemical evolution code applied to a Milky Way type Galaxy, incorporating the role of spiral arms in shaping azimuthal abundance variations, and confront the predicted behaviour with recent observations taken with integral field units. To the usual radial distribution of mass, we add the surface density of the spiral wave and study its effect on star formation and elemental abundances. We compute five different models: one with azimuthal symmetry which depends only on radius, while the other four are subjected to the effect of a spiral density wave. At early times, the imprint of the spiral density wave is carried by both the stellar and star formation surface densities; conversely, the elemental abundance pattern is less affected. At later epochs, however, differences among the models are diluted, becoming almost indistinguishable given current observational uncertainties. At the present time, the largest differences appear in the star formation rate and/or in the outer disc (R ≥ 18 kpc). The predicted azimuthal oxygen abundance patterns for t ≤ 2 Gyr are in reasonable agreement with recent observations obtained with VLT/MUSE for NGC 6754.

 
more » « less
NSF-PAR ID:
10120783
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 665-682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The filamentary nature of accretion streams found around embedded sources suggests that protostellar disks experience heterogenous infall from the star-forming environment, consistent with the accretion behavior onto star-forming cores in top-down star-cluster formation simulations. This may produce disk substructures in the form of rings, gaps, and spirals that continue to be identified by high-resolution imaging surveys in both embedded Class 0/I and later Class II sources. We present a parameter study of anisotropic infall, informed by the properties of accretion flows onto protostellar cores in numerical simulations, and varying the relative specific angular momentum of incoming flows as well as their flow geometry. Our results show that anisotropic infall perturbs the disk and readily launches the Rossby wave instability. It forms vortices at the inner and outer edges of the infall zone where material is deposited. These vortices drive spiral waves and angular momentum transport, with some models able to drive stresses corresponding to a viscosity parameter on the order ofα∼ 10−2. The resulting azimuthal shear forms robust pressure bumps that act as barriers to radial drift of dust grains, as demonstrated by postprocessing calculations of drift-dominated dust evolution. We discuss how a self-consistent model of anisotropic infall can account for the formation of millimeter rings in the outer disk as well as producing compact dust disks, consistent with observations of embedded sources.

     
    more » « less
  2. Abstract

    We combine JWST observations with Atacama Large Millimeter/submillimeter Array CO and Very Large Telescope MUSE Hαdata to examine off-spiral arm star formation in the face-on, grand-design spiral galaxy NGC 628. We focus on the northern spiral arm, around a galactocentric radius of 3–4 kpc, and study two spurs. These form an interesting contrast, as one is CO-rich and one CO-poor, and they have a maximum azimuthal offset in MIRI 21μm and MUSE Hαof around 40° (CO-rich) and 55° (CO-poor) from the spiral arm. The star formation rate is higher in the regions of the spurs near spiral arms, but the star formation efficiency appears relatively constant. Given the spiral pattern speed and rotation curve of this galaxy and assuming material exiting the arms undergoes purely circular motion, these offsets would be reached in 100–150 Myr, significantly longer than the 21μm and Hαstar formation timescales (both < 10 Myr). The invariance of the star formation efficiency in the spurs versus the spiral arms indicates massive star formation is not only triggered in spiral arms, and cannot simply occur in the arms and then drift away from the wave pattern. These early JWST results show that in situ star formation likely occurs in the spurs, and that the observed young stars are not simply the “leftovers” of stellar birth in the spiral arms. The excellent physical resolution and sensitivity that JWST can attain in nearby galaxies will well resolve individual star-forming regions and help us to better understand the earliest phases of star formation.

     
    more » « less
  3. ABSTRACT We present a comparison of galaxy atomic and molecular gas properties in three recent cosmological hydrodynamic simulations, namely SIMBA, EAGLE, and IllustrisTNG, versus observations from z ∼ 0 to 2. These simulations all rely on similar subresolution prescriptions to model cold interstellar gas that they cannot represent directly, and qualitatively reproduce the observed z ≈ 0 H i and H2 mass functions (HIMFs and H2MFs, respectively), CO(1–0) luminosity functions (COLFs), and gas scaling relations versus stellar mass, specific star formation rate, and stellar surface density μ*, with some quantitative differences. To compare to the COLF, we apply an H2-to-CO conversion factor to the simulated galaxies based on their average molecular surface density and metallicity, yielding substantial variations in αCO and significant differences between models. Using this, predicted z = 0 COLFs agree better with data than predicted H2MFs. Out to z ∼ 2, EAGLE’s and SIMBA’s HIMFs and COLFs strongly increase, while IllustrisTNG’s HIMF declines and COLF evolves slowly. EAGLE and simba reproduce high-LCO(1–0) galaxies at z ∼ 1–2 as observed, owing partly to a median αCO(z = 2) ∼ 1 versus αCO(z = 0) ∼ 3. Examining H i, H2, and CO scaling relations, their trends with M* are broadly reproduced in all models, but EAGLE yields too little H i in green valley galaxies, IllustrisTNG and SIMBA overproduce cold gas in massive galaxies, and SIMBA overproduces molecular gas in small systems. Using SIMBA variants that exclude individual active galactic nucleus (AGN) feedback modules, we find that SIMBA’s AGN jet feedback is primarily responsible by lowering cold gas contents from z ∼ 1 → 0 by suppressing cold gas in $M_*\gtrsim 10^{10}{\rm \,M}_\odot$ galaxies, while X-ray feedback suppresses the formation of high-μ* systems. 
    more » « less
  4. ABSTRACT

    We use high-resolution maps of the molecular interstellar medium (ISM) in the centres of 86 nearby galaxies from the millimetre-Wave Interferometric Survey of Dark Object Masses (WISDOM) and Physics at High Angular Resolution in Nearby GalaxieS (PHANGS) surveys to investigate the physical mechanisms setting the morphology of the ISM at molecular cloud scales. We show that early-type galaxies tend to have smooth, regular molecular gas morphologies, while the ISM in spiral galaxy bulges is much more asymmetric and clumpy when observed at the same spatial scales. We quantify these differences using non-parametric morphology measures (Asymmetry, Smoothness, and Gini), and compare these measurements with those extracted from idealized galaxy simulations. We show that the morphology of the molecular ISM changes systematically as a function of various large-scale galaxy parameters, including galaxy morphological type, stellar mass, stellar velocity dispersion, effective stellar mass surface density, molecular gas surface density, star formation efficiency, and the presence of a bar. We perform a statistical analysis to determine which of these correlated parameters best predicts the morphology of the ISM. We find the effective stellar mass surface (or volume) density to be the strongest predictor of the morphology of the molecular gas, while star formation and bars maybe be important secondary drivers. We find that gas self-gravity is not the dominant process shaping the morphology of the molecular gas in galaxy centres. Instead effects caused by the depth of the potential well, such as shear, suppression of stellar spiral density waves, and/or inflow, affect the ability of the gas to fragment.

     
    more » « less
  5. It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M 51 in 33 GHz radio continuum, an extinction-free tracer of star formation, at 3″ scales (∼100 pc). We combined this map with interferometric PdBI/NOEMA observations of CO(1–0) and HCN(1–0) at matched resolution for three regions in M 51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M 51; for example, the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite its high dense gas fraction. Combining our results with measurements from the literature at 100 pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars. 
    more » « less