skip to main content


Title: 100 Years of Progress in Understanding the Dynamics of Coupled Atmosphere–Ocean Variability
Abstract

In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.

 
more » « less
NSF-PAR ID:
10120826
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Meteorological Monographs
Volume:
59
ISSN:
0065-9401
Page Range / eLocation ID:
p. 8.1-8.57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent research has linked the climate variability associated with ocean-atmosphere teleconnections to impacts rippling throughout environmental, economic, and social systems. This research reviews recent literature through 2021 in which we identify linkages among the major modes of climate variability, in the form of ocean-atmosphere teleconnections, and the impacts to temperature and precipitation of the South-Central United States (SCUSA), consisting of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. The SCUSA is an important areal focus for this analysis because it straddles the ecotone between humid and arid climates in the United States and has a growing population, diverse ecosystems, robust agricultural and other economic sectors including the potential for substantial wind and solar energy generation. Whereas a need exists to understand atmospheric variability due to the cascading impacts through ecological and social systems, our understanding is complicated by the positioning of the SCUSA between subtropical and extratropical circulation features and the influence of the Pacific and Atlantic Oceans, and the adjacent Gulf of Mexico. The Southern Oscillation (SO), Pacific-North American (PNA) pattern, North Atlantic Oscillation (NAO) and the related Arctic Oscillation (AO), Atlantic Multidecadal Oscillation/Atlantic Multidecadal Variability (AMO/AMV), and Pacific Decadal Oscillation/Pacific Decadal Variability (PDO/PDV) have been shown to be important modulators of temperature and precipitation variables at the monthly, seasonal, and interannual scales, and the intraseasonal Madden-Julian Oscillation (MJO) in the SCUSA. By reviewing these teleconnection impacts in the region alongside updated seasonal correlation maps, this research provides more accessible and comparable results for interdisciplinary use on climate impacts beyond the atmospheric-environmental sciences. 
    more » « less
  2. Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components. 
    more » « less
  3. Based on observational data, this work examines the multi-time-scale feature of the sea surface temperature (SST) variability averaged in the whole North Atlantic Ocean (to be referred to as NASST), as well as its time-scale-dependent connections with El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Traditionally, the NASST index is used to characterize the SST trend and multidecadal variability in the North Atlantic. This study found that superimposed on a prominent long-term trend, NASST is nonnegligible at subannual and interannual time scales, compared with that at decadal to multidecadal time scales. Spatially, the interannual variation of NASST is characterized by a horseshoe-like pattern of the SST anomaly (SSTA) in the North Atlantic. It is mainly a lagged response to ENSO through the atmospheric bridge, and NAO plays a secondary role. At the subannual time scale, both ENSO and NAO play a role in generating the fluctuations of NASST and a horseshoe-like pattern in the North Atlantic. Nevertheless, both the ENSO- and NAO-driven variations only explain a small fraction of the variances in both the interannual and subannual time scales. Thus, other factors unrelated to ENSO or NAO may play a more important role. The associated thermodynamical processes are similar at the two time scales; however, the dynamical processes have a significant contribution to the subannual component, but not to the interannual component. Thus, the SSTA averaged in the North Atlantic as a whole varies at different time scales and is associated with different mechanisms.

     
    more » « less
  4. The Atlantic and Pacific basin are found linked in the context of multidecadal SST variability from analyses of 118 years of observational data. Recurrent spatiotemporal variability, including multidecadal modes, was identified using the extended-EOF technique in a longitudinally global domain, allowing unfettered expression of interbasin interactions. The physicality of the obtained decadal modes was assessed using fishery records and analog counts.

    A three-mode structure with bi-directional interbasin links frames the new perspective on the cycling of multidecadal SST variability. The three modes are the Atlantic multidecadal oscillation (AMO), low-frequency North Atlantic Oscillation (LF-NAO), and North Pacific decadal variability [PDV-NP; resembling negative (–ve) PDO]. The two previously documented links AMO→PDV-NP (with ~12.5-yr lead) and LF-NAO→AMO (with 16-yr lead) are corroborated, while a third one, PDV-NP→(−LF-NAO) with ~6.5-yr lead, is uncovered. The interaction triad closes the loop on the cycling of multidecadal SST variability, generating AMO’s phase reversal in ~35 years, consistent with its widely noted ~70-yr time scale. The two previously noted links—one intrabasin and one interbasin—were unsuccessful in this regard.

    Other findings include the deeper subsurface extensions of Atlantic multidecadal SST variability, and the hitherto unrecognized similarity of Pan-Pacific decadal variability and North Pacific Gyre Oscillation. Instrumental records, albeit short in the context of multidecadal variability, must continue to be mined for insights into the functioning of the climate system as its model representations while improving, remain inadequate.

     
    more » « less
  5. Earth’s climate fluctuates considerably on decadal-multidecadal time scales, often causing large damages to our society and environment. These fluctuations usually result from internal dynamics, and many studies have linked them to internal climate modes in the North Atlantic and Pacific oceans. Here, we show that variations in volcanic and anthropogenic aerosols have caused in-phase, multidecadal SST variations since 1920 across all ocean basins. These forced variations resemble the Atlantic Multidecadal Oscillation (AMO) in time. Unlike the North Atlantic, where indirect and direct aerosol effects on surface solar radiation drive the multidecadal SST variations, over the tropical central and western Pacific atmospheric circulation response to aerosol forcing plays an important role, whereas aerosol-induced radiation change is small. Our new finding implies that AMO-like climate variations in Eurasia, North America, and other regions may be partly caused by the aerosol forcing, rather than being originated from the North Atlantic SST variations as previously thought. 
    more » « less