skip to main content


Title: Pore‐Scale Flow Characterization of Polymer Solutions in Microfluidic Porous Media
Abstract

Polymer solutions are frequently used in enhanced oil recovery and groundwater remediation to improve the recovery of trapped nonaqueous fluids. However, applications are limited by an incomplete understanding of the flow in porous media. The tortuous pore structure imposes both shear and extension, which elongates polymers; moreover, the flow is often at large Weissenberg numbers, Wi, at which polymer elasticity in turn strongly alters the flow. This dynamic elongation can even produce flow instabilities with strong spatial and temporal fluctuations despite the low Reynolds number, Re. Unfortunately, macroscopic approaches are limited in their ability to characterize the pore‐scale flow. Thus, understanding how polymer conformations, flow dynamics, and pore geometry together determine these nontrivial flow patterns and impact macroscopic transport remains an outstanding challenge. This review describes how microfluidic tools can shed light on the physics underlying the flow of polymer solutions in porous media at high Wi and low Re. Specifically, microfluidic studies elucidate how steady and unsteady flow behavior depends on pore geometry and solution properties, and how polymer‐induced effects impact nonaqueous fluid recovery. This work thus provides new insights for polymer dynamics, non‐Newtonian fluid mechanics, and applications such as enhanced oil recovery and groundwater remediation.

 
more » « less
NSF-PAR ID:
10120984
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
16
Issue:
9
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A fundamental understanding of the flow of polymer solutions through the pore spaces of porous media is relevant and significant to enhanced oil recovery and groundwater remediation. We present in this work an experimental study of the fluid rheological effects on non-Newtonian flows in a simple laboratory model of the real-world pores—a rectangular sudden contraction–expansion microchannel. We test four different polymer solutions with varying rheological properties, including xanthan gum (XG), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO), and polyacrylamide (PAA). We compare their flows against that of pure water at the Reynolds ( R e ) and Weissenburg ( W i ) numbers that each span several orders of magnitude. We use particle streakline imaging to visualize the flow at the contraction–expansion region for a comprehensive investigation of both the sole and the combined effects of fluid shear thinning, elasticity and inertia. The observed flow regimes and vortex development in each of the tested fluids are summarized in the dimensionless W i − R e and χ L − R e parameter spaces, respectively, where χ L is the normalized vortex length. We find that fluid inertia draws symmetric vortices downstream at the expansion part of the microchannel. Fluid shear thinning causes symmetric vortices upstream at the contraction part. The effect of fluid elasticity is, however, complicated to analyze because of perhaps the strong impact of polymer chemistry such as rigidity and length. Interestingly, we find that the downstream vortices in the flow of Newtonian water, shear-thinning XG and elastic PVP solutions collapse into one curve in the χ L − R e space. 
    more » « less
  2. Having a basic understanding of non-Newtonian fluid flow through porous media, which usually consist of series of expansions and contractions, is of importance for enhanced oil recovery, groundwater remediation, microfluidic particle manipulation, etc. The flow in contraction and/or expansion microchannel is unbounded in the primary direction and has been widely studied before. In contrast, there has been very little work on the understanding of such flow in an expansion–contraction microchannel with a confined cavity. We investigate the flow of five types of non-Newtonian fluids with distinct rheological properties and water through a planar single-cavity microchannel. All fluids are tested in a similarly wide range of flow rates, from which the observed flow regimes and vortex development are summarized in the same dimensionless parameter spaces for a unified understanding of the effects of fluid inertia, shear thinning, and elasticity as well as confinement. Our results indicate that fluid inertia is responsible for developing vortices in the expansion flow, which is trivially affected by the confinement. Fluid shear thinning causes flow separations on the contraction walls, and the interplay between the effects of shear thinning and inertia is dictated by the confinement. Fluid elasticity introduces instability and asymmetry to the contraction flow of polymers with long chains while suppressing the fluid inertia-induced expansion flow vortices. However, the formation and fluctuation of such elasto-inertial fluid vortices exhibit strong digressions from the unconfined flow pattern in a contraction–expansion microchannel of similar dimensions. 
    more » « less
  3. Micromodels with simplified porous microfluidic systems are widely used to mimic the underground oil‐reservoir environment for multiphase flow studies, enhanced oil recovery, and reservoir network mapping. However, previous micromodels cannot replicate the length scales and geochemistry of carbonate because of their material limitations. Here a simple method is introduced to create calcium carbonate (CaCO3) micromodels composed of in situ grown CaCO3. CaCO3nanoparticles/polymer composite microstructures are built in microfluidic channels by photopatterning, and CaCO3nanoparticles are selectively grown in situ from these microstructures by supplying Ca2+, CO32−ions rich, supersaturated solutions. This approach enables us to fabricate synthetic CaCO3reservoir micromodels having dynamically tunable geometries with submicrometer pore‐length scales and controlled wettability. Using this new method, acid fracturing and an immiscible fluid displacement process are demonstrated used in real oil field applications to visualize pore‐scale fluid–carbonate interactions in real time.

     
    more » « less
  4. null (Ed.)
    Abstract We conduct pore-scale simulations of two-phase flow using the 2D Rothman–Keller colour gradient lattice Boltzmann method to study the effect of wettability on saturation at breakthrough (sweep) when the injected fluid first passes through the right boundary of the model. We performed a suite of 189 simulations in which a “red” fluid is injected at the left side of a 2D porous model that is initially saturated with a “blue” fluid spanning viscosity ratios $$M = \nu _\mathrm{r}/\nu _\mathrm{b} \in [0.001,100]$$ M = ν r / ν b ∈ [ 0.001 , 100 ] and wetting angles $$\theta _\mathrm{w} \in [ 0^\circ ,180^\circ ]$$ θ w ∈ [ 0 ∘ , 180 ∘ ] . As expected, at low-viscosity ratios $$M=\nu _\mathrm{r}/\nu _\mathrm{b} \ll 1$$ M = ν r / ν b ≪ 1 we observe viscous fingering in which narrow tendrils of the red fluid span the model, and for high-viscosity ratios $$M \gg 1$$ M ≫ 1 , we observe stable displacement. The viscous finger morphology is affected by the wetting angle with a tendency for more rounded fingers when the injected fluid is wetting. However, rather than the expected result of increased saturation with increasing wettability, we observe a complex saturation landscape at breakthrough as a function of viscosity ratio and wetting angle that contains hills and valleys with specific wetting angles at given viscosity ratios that maximize sweep. This unexpected result that sweep does not necessarily increase with wettability has major implications to enhanced oil recovery and suggests that the dynamics of multiphase flow in porous media has a complex relationship with the geometry of the medium and the hydrodynamical parameters. 
    more » « less
  5. Pressure is important in virtually all problems in fluid dynamics from macro-scale to micro/nano-scale flows. Although technologies are well developed for its measurement at the macroscopic scale, pressure quantification at the microscopic scale is still not trivial. This study reports the design and fabrication of an on-chip sensor that enables quantification of pressure in microfluidic devices based on a novel technique called astigmatic particle tracking. With this technique, thin membranes that sense pressure variations in the fluid flow can be characterized conveniently by imaging the shapes of the particles embedded in the membranes. This innovative design only relies on the reflected light from the back of the microchannel, rendering the sensor to be separate and noninvasive to the flow of interest. This sensor was then applied to characterize the pressure drop in single-phase flows with an accuracy of ∼70 Pa and good agreement was achieved between the sensor, a commercial pressure transducer and numerical simulation results. Additionally, the sensor successfully measured the capillary pressure across an air–water interface with a 7% deviation from the theoretical value. To the best of our knowledge, this pore-scale capillary pressure quantification is achieved for the first time using an on-chip pressure sensor of this kind. This study provides a novel method for in situ quantification of local pressure and thus opens the door to a renewed understanding of pore-scale physics of local pressure in multi-phase flow in porous media. 
    more » « less