skip to main content


Title: Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks
Abstract

We use very long baseline interferometry to measure the proper motions of three black hole X-ray binaries (BHXBs). Using these results together with data from the literature and Gaia DR2 to collate the best available constraints on proper motion, parallax, distance, and systemic radial velocity of 16 BHXBs, we determined their three-dimensional Galactocentric orbits. We extended this analysis to estimate the probability distribution for the potential kick velocity (PKV) a BHXB system could have received on formation. Constraining the kicks imparted to BHXBs provides insight into the birth mechanism of black holes (BHs). Kicks also have a significant effect on BH–BH merger rates, merger sites, and binary evolution, and can be responsible for spin–orbit misalignment in BH binary systems. 75 per cent of our systems have potential kicks $\gt 70\, \rm {km\,s^{-1}}$. This suggests that strong kicks and hence spin–orbit misalignment might be common among BHXBs, in agreement with the observed quasi-periodic X-ray variability in their power density spectra. We used a Bayesian hierarchical methodology to analyse the PKV distribution of the BHXB population, and suggest that a unimodal Gaussian model with a mean of 107 $\pm \,\,16\, \rm {km\,s^{-1}}$ is a statistically favourable fit. Such relatively high PKVs would also reduce the number of BHs likely to be retained in globular clusters. We found no significant correlation between the BH mass and PKV, suggesting a lack of correlation between BH mass and the BH birth mechanism. Our python code allows the estimation of the PKV for any system with sufficient observational constraints.

 
more » « less
NSF-PAR ID:
10121273
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
489
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3116-3134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  2. Abstract The component black holes (BHs) observed in gravitational-wave (GW) binary black hole (BBH) events tend to be more massive and slower spinning than those observed in black hole X-ray binaries (BH-XRBs). Without modeling their evolutionary histories, we investigate whether these apparent tensions in the BH populations can be explained by GW observational selection effects alone. We find that this is indeed the case for the discrepancy between BH masses in BBHs and the observed high-mass X-ray binaries (HMXBs), when we account for statistical uncertainty from the small sample size of just three HMXBs. On the other hand, the BHs in observed low-mass X-ray binaries (LMXBs) are significantly lighter than the astrophysical BBH population, but this may just be due to a correlation between component masses in a binary system. Given their light stellar companions, we expect light BHs in LMXBs. The observed spins in HMXBs and LMXBs, however, are in tension with the inferred BBH spin distribution at the >99.9% level. We discuss possible scenarios behind the significantly larger spins in observed BH-XRBs. One possibility is that a small subpopulation (conservatively <30%) of BBHs have rapidly spinning primary components, indicating that they may have followed a similar evolutionary pathway to the observed HMXBs. In LMXBs, it has been suggested that BHs can spin up by accretion. If LMXB natal spins follow the BBH spin distribution, we find LMXBs must gain an average dimensionless spin of 0.47 − 0.11 + 0.10 , but if their natal spins follow the observed HMXB spins, the average spin-up must be <0.03. 
    more » « less
  3. ABSTRACT

    We study the long-term orbital evolution of stars around a merging massive or supermassive black hole binary (BHB), taking into account the general relativistic effect induced by the black hole (BH) spin. When the BH spin is significant compared to and misaligned with the binary orbital angular momentum, the orbital axis ($\hat{\boldsymbol {l}}$) of the circumbinary star can undergo significant evolution during the binary orbital decay driven by gravitational radiation. Including the spin effect of the primary (more massive) BH, we find that starting from nearly coplanar orbital orientations, the orbital axes $\hat{\boldsymbol {l}}$ of circumbinary stars preferentially evolve towards the spin direction after the merger of the BHB, regardless of the initial BH spin orientation. Such alignment phenomenon, i.e. small final misalignment angle between $\hat{\boldsymbol {l}}$ and the spin axis of the remnant BH $\hat{\boldsymbol {S}}$, can be understood analytically using the principle of adiabatic invariance. For the BHBs with extremely mass ratio (m2/m1 ≲ 0.01), $\hat{\boldsymbol {l}}$ may experience more complicated evolution as adiabatic invariance breaks down, but the trend of alignment still works reasonably well when the initial binary spin–orbit angle is relatively small. Our result suggests that the correlation between the orientations of stellar orbits and the spin axis of the central BH could provide a potential signature of the merger history of the massive BH.

     
    more » « less
  4. Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5  M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q  =  M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q  = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q  = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG. 
    more » « less
  5. All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50  M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster). 
    more » « less