skip to main content


Title: Punctuated equilibrium or incrementalism in policymaking: What we can and cannot learn from the distribution of policy changes
Theories in political science are most commonly tested through comparisons of means via difference tests or regression, but some theoretical frameworks offer implications regarding other distributional features. I consider the literature on models of policy change, and their implications for the thickness of the tails in the distribution of policy change. Change in public policy output is commonly characterized by periods of stasis that are punctuated by dramatic change—a heavy-tailed distribution of policy change. Heavy-tailed policy change is used to differentiate between the incrementalism and punctuated equilibrium models of policy change. The evidentiary value of heavy-tailed outputs rests on the assumption that changes in inputs are normally distributed. I show that, in order for conventional assumptions to imply normally distributed inputs, variance in the within-time distribution of inputs must be assumed to be constant over time. I present this result, and then present an empirical example of a possible aggregate policy input—a major public opinion survey item—that exhibits over-time variation in within-time variance. I conclude that the results I present should serve as motivation for those interested in testing the implications of punctuated equilibrium theory to adopt more flexible assumptions regarding, and endeavor to measure, policy inputs.  more » « less
Award ID(s):
1637089
NSF-PAR ID:
10121490
Author(s) / Creator(s):
Date Published:
Journal Name:
Research & Politics
Volume:
6
Issue:
3
ISSN:
2053-1680
Page Range / eLocation ID:
205316801987139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper. 
    more » « less
  2. Schieffelin, John (Ed.)
    Background Prediction of the dynamics of new SARS-CoV-2 infections during the current COVID-19 pandemic is critical for public health planning of efficient health care allocation and monitoring the effects of policy interventions. We describe a new approach that forecasts the number of incident cases in the near future given past occurrences using only a small number of assumptions. Methods Our approach to forecasting future COVID-19 cases involves 1) modeling the observed incidence cases using a Poisson distribution for the daily incidence number, and a gamma distribution for the series interval; 2) estimating the effective reproduction number assuming its value stays constant during a short time interval; and 3) drawing future incidence cases from their posterior distributions, assuming that the current transmission rate will stay the same, or change by a certain degree. Results We apply our method to predicting the number of new COVID-19 cases in a single state in the U.S. and for a subset of counties within the state to demonstrate the utility of this method at varying scales of prediction. Our method produces reasonably accurate results when the effective reproduction number is distributed similarly in the future as in the past. Large deviations from the predicted results can imply that a change in policy or some other factors have occurred that have dramatically altered the disease transmission over time. Conclusion We presented a modelling approach that we believe can be easily adopted by others, and immediately useful for local or state planning. 
    more » « less
  3. Abstract

    Variance in reproductive success is a major determinant of the degree of genetic drift in a population. While many plants and animals exhibit high variance in their number of progeny, far less is known about these distributions for microorganisms. Here, we used a strain barcoding approach to quantify variability in offspring number among replicate bacterial populations and developed a Bayesian method to infer the distribution of descendants from this variability. We applied our approach to measure the offspring distributions for five strains of bacteria from the genusStreptomycesafter germination and growth in a homogenous laboratory environment. The distributions of descendants were heavy‐tailed, with a few cells effectively ‘winning the jackpot’ to become a disproportionately large fraction of the population. This extreme variability in reproductive success largely traced back to initial populations of spores stochastically exiting dormancy, which provided early‐germinating spores with an exponential advantage. In simulations with multiple dormancy cycles, heavy‐tailed distributions of descendants decreased the effective population size by many orders of magnitude and led to allele dynamics differing substantially from classical population genetics models with matching effective population size. Collectively, these results demonstrate that extreme variability in reproductive success can occur even in growth conditions that are far more homogeneous than the natural environment. Thus, extreme variability in reproductive success might be an important factor shaping microbial population dynamics with implications for predicting the fate of beneficial mutations, interpreting sequence variability within populations and explaining variability in infection outcomes across patients.

     
    more » « less
  4. Bardanis, M. (Ed.)
    It is unlikely to predict the distribution of soil suction in the field deterministically. It is well established that there are various sources of uncertainty in the measurement of matric suction, and the suction measurements in the field are even more critical because of the heterogeneities in the field conditions. Hence it becomes necessary to probabilistically characterize the suction in the field for enhanced reliability. The objective of this study was to conduct a probabilistic analysis of measured soil suction of two different test landfill covers, compacted clay cover (CC) and engineered turf cover (ETC), under similar meteorological events. The size of the two test landfill covers was 3 m × 3 m (10 ft. × 10 ft.) and 1.2 m (4ft.) in depth. The covers were constructed by excavating the existing subgrade, placing 6-mil plastic sheets, and backfilling the excavated soil, followed by layered compaction. Then the covers were instrumented identically with soil water potential sensors up to specified depths. One of the covers acted as the CC, and the other cover was ETC. In ETC, engineered turf was laid over the compacted soil. The engineered turf consisted of a structured LLDPE geomembrane overlain by synthetic turf (polyethylene fibers tufted through a double layer of woven polypropylene geotextiles). The sensors were connected to an automated data logging system and the collected data were probabilistically analyzed using the R program. There were significant inconsistencies in the descriptive statistical parameters of the measured soil suction at both covers under the same climatic conditions. Soil suction measured in the field ranged between almost 12 to 44 kPa in ETC, while it was in the range of almost 1 to 2020 kPa in the CC. The histogram and quantile-quantile (Q-Q) plot showed the data to be non-normally distributed in the field. A heavy-tailed leptokurtic (Kurtosis=13) distribution of suction was observed in the ETC with substantial outliers. In contrast, the suction distribution in CC was observed skewed to the right containing a thinner tail indicating an almost platykurtic distribution. The distribution of suction in the field under engineered turf was observed to be reasonably consistent with time compared to bare soil under the same meteorological events. The results obtained from this study revealed the engineered turf system to be an effective barrier to inducing changes in soil suction against climatic events. 
    more » « less
  5. Abstract

    Structured population models are among the most widely used tools in ecology and evolution. Integral projection models (IPMs) use continuous representations of how survival, reproduction and growth change as functions of state variables such as size, requiring fewer parameters to be estimated than projection matrix models (PPMs). Yet, almost all published IPMs make an important assumption that size‐dependent growth transitions are or can be transformed to be normally distributed. In fact, many organisms exhibit highly skewed size transitions. Small individuals can grow more than they can shrink, and large individuals may often shrink more dramatically than they can grow. Yet, the implications of such skew for inference from IPMs has not been explored, nor have general methods been developed to incorporate skewed size transitions into IPMs, or deal with other aspects of real growth rates, including bounds on possible growth or shrinkage.

    Here, we develop a flexible approach to modelling skewed growth data using a modified beta regression model. We propose that sizes first be converted to a (0,1) interval by estimating size‐dependent minimum and maximum sizes through quantile regression. Transformed data can then be modelled using beta regression with widely available statistical tools. We demonstrate the utility of this approach using demographic data for a long‐lived plant, gorgonians and an epiphytic lichen. Specifically, we compare inferences of population parameters from discrete PPMs to those from IPMs that either assume normality or incorporate skew using beta regression or, alternatively, a skewed normal model.

    The beta and skewed normal distributions accurately capture the mean, variance and skew of real growth distributions. Incorporating skewed growth into IPMs decreases population growth and estimated life span relative to IPMs that assume normally distributed growth, and more closely approximate the parameters of PPMs that do not assume a particular growth distribution. A bounded distribution, such as the beta, also avoids the eviction problem caused by predicting some growth outside the modelled size range.

    Incorporating biologically relevant skew in growth data has important consequences for inference from IPMs. The approaches we outline here are flexible and easy to implement with existing statistical tools.

     
    more » « less