We use local stratified shearing-box simulations with magnetic field-aligned thermal conduction to study an idealized model of the coupling between a cold, radiatively efficient accretion disc, and an overlying, hot, two-temperature corona. Evaporation of a cold disc by conduction from the hot corona has been proposed as a means of mediating the soft-to-hard state transitions observed in X-ray binary systems. We model the coronal plasma in our local disc patch as an MHD fluid subject to both free-streaming ion conduction and a parametrized cooling function that captures the collisional transfer of energy from hot ions to colder, rapidly cooling leptons. In all of our models, independent of the initial net vertical magnetic flux (NF) threading the disc, we find no evidence of disc evaporation. The ion heat flux into the disc is radiated away before conduction can heat the disc’s surface layers. When an initial NF is present, steady-state temperature, density, and outflow velocities in our model coronae are unaffected by conduction. Instead of facilitating disc evaporation, thermal conduction is more likely to feed the disc with plasma condensing out of the corona, particularly in flows without NF. Our work indicates that uncertainties in the amount of NF threading the disc hold far greater influence over whether or not the disc will evaporate into a radiatively inefficient accretion flow compared to thermal conduction. We speculate that a change in net flux mediates disc truncation/evaporation.
We use spherically symmetric hydrodynamic simulations to study the dynamical evolution and internal structure of superbubbles (SBs) driven by clustered supernovae (SNe), focusing on the effects of thermal conduction and cooling in the interface between the hot bubble interior and cooled shell. Our simulations employ an effective diffusivity to account for turbulent mixing from non-linear instabilities that are not captured in 1D. The conductive heat flux into the shell is balanced by a combination of cooling in the interface and evaporation of shell gas into the bubble interior. This evaporation increases the density, and decreases the temperature, of the SB interior by more than an order of magnitude relative to simulations without conduction. However, most of the energy conducted into the interface is immediately lost to cooling, reducing the evaporative mass flux required to balance conduction. As a result, the evaporation rate is typically a factor of ∼3–30 lower than predicted by the classical similarity solution of (Weaver et al. 1977), which neglects cooling. Blast waves from the first ∼30 SNe remain supersonic in the SB interior because reduced evaporation from the interface lowers the mass they sweep up in the hot interior. Updating the Weaver solution to include cooling, we construct a new analytic model to predict the cooling rate, evaporation rate, and temporal evolution of SBs. The cooling rate, and hence the hot gas mass, momentum, and energy delivered by SBs, is set by the ambient interstellar mass density and the efficiency of non-linear mixing at the bubble–shell interface.
more » « less- PAR ID:
- 10121574
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 490
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 1961-1990
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Turbulent radiative mixing layers (TRMLs) form at the interface of cold, dense gas and hot, diffuse gas in motion with each other. TRMLs are ubiquitous in and around galaxies on a variety of scales, including galactic winds and the circumgalactic medium. They host the intermediate-temperature gases that are efficient in radiative cooling, thus playing a crucial role in controlling the cold gas supply, phase structure, and spectral features of galaxies. In this work, we develop an intuitive analytic 1.5-dimensional model for TRMLs that includes a simple parameterization of the effective turbulent conductivity and viscosity and a piecewise power-law cooling curve. Our analytic model reproduces the mass flux, total cooling, and phase structure of 3D simulations of TRMLs at a fraction of the computational cost. It also reveals essential insights into the physics of TRMLs, particularly the importance of the viscous dissipation of relative kinetic energy in balancing radiative cooling as the shear Mach number approaches unity. This dissipation takes place both in the intermediate-temperature phase, which reduces the enthalpy flux from the hot phase, and in the cold phase, which enhances radiative cooling. Additionally, our model provides a fast and easy way of computing the column density and surface brightness of TRMLs, which can be directly linked to observations.
-
Abstract Massive elliptical galaxies harbor large amounts of hot gas (
T ≳ 106K) in their interstellar medium (ISM) but are typically quiescent in star formation. The jets of active galactic nuclei (AGNs) and Type Ia supernovae (SNe Ia) inject energy into the ISM, which offsets its radiative losses and keeps it hot. SNe Ia deposit their energy locally within the galaxy compared to the larger few ×10 kiloparsec-scale AGN jets. In this study, we perform high-resolution (5123) hydrodynamic simulations of a local (1 kpc3) density-stratified patch of the ISM of massive galaxies. We include radiative cooling and shell-averaged volume heating, as well as randomly exploding SN Ia. We study the effect of different fractions of supernova (SN) heating (with respect to the net cooling rate), different initial ISM density/entropy (which controls the growth timet tiof the thermal instability), and different degrees of stratification (which affect the freefall timet ff). We find that SNe Ia drive predominantly compressive turbulence in the ISM with a velocity dispersion ofσ v up to 40 km s−1and logarithmic density dispersion ofσ s ∼ 0.2–0.4. These fluctuations trigger multiphase condensation in regions of the ISM, where , in agreement with theoretical expectations that large density fluctuations efficiently trigger multiphase gas formation. Since the SN Ia rate is not self-adjusting, when the net cooling drops below the net heating rate, SNe Ia drive a hot wind which sweeps out most of the mass in our local model. Global simulations are required to assess the ultimate fate of this gas. -
ABSTRACT The early growth of black holes (BHs) in high-redshift galaxies is likely feedback regulated. While radiative feedback has been extensively studied, the role of mechanical feedback has received less scrutiny to date. Here, we use high-resolution parsec-scale hydrodynamical simulations to study jet propagation and its effect on 100 M⊙ BH accretion in the dense, low-metallicity gas expected in early protogalaxies. As the jet propagates, it shocks the surrounding gas forming a jet cocoon. The cocoon consists of a rapidly cooling cold phase at the interface with the background gas and an overpressured subsonic phase of reverse shock-heated gas filling the interior. We vary the background gas density and temperature, BH feedback efficiency, and the jet model. We found that the width of the jet cocoon roughly follows a scaling derived by assuming momentum conservation in the jet-propagation direction and energy conservation in the lateral directions. Depending on the assumed gas and jet properties, the cocoon either stays elongated to large radii or isotropizes before reaching the Bondi radius, forming a nearly spherical bubble. Lower jet velocities and higher background gas densities result in self-regulation to higher momentum fluxes and elongated cocoons. In all cases, the outward cocoon momentum flux balances the inward inflowing gas momentum flux near the Bondi radius, which ultimately regulates BH accretion. The time-averaged accretion rate always remains below the Bondi rate, and exceeds the Eddington rate only if the ambient medium is dense and cold, and/or the jet is weak (low velocity and mass loading).
-
Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following: ▪ The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( T ∼ 104K) when cooling is rapid. ▪ Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. ▪ In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds. ▪ Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.