skip to main content


Title: SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting
Abstract Motivation

Mitochondria are an essential organelle in most eukaryotes. They not only play an important role in energy metabolism but also take part in many critical cytopathological processes. Abnormal mitochondria can trigger a series of human diseases, such as Parkinson's disease, multifactor disorder and Type-II diabetes. Protein submitochondrial localization enables the understanding of protein function in studying disease pathogenesis and drug design.

Results

We proposed a new method, SubMito-XGBoost, for protein submitochondrial localization prediction. Three steps are included: (i) the g-gap dipeptide composition (g-gap DC), pseudo-amino acid composition (PseAAC), auto-correlation function (ACF) and Bi-gram position-specific scoring matrix (Bi-gram PSSM) are employed to extract protein sequence features, (ii) Synthetic Minority Oversampling Technique (SMOTE) is used to balance samples, and the ReliefF algorithm is applied for feature selection and (iii) the obtained feature vectors are fed into XGBoost to predict protein submitochondrial locations. SubMito-XGBoost has obtained satisfactory prediction results by the leave-one-out-cross-validation (LOOCV) compared with existing methods. The prediction accuracies of the SubMito-XGBoost method on the two training datasets M317 and M983 were 97.7% and 98.9%, which are 2.8–12.5% and 3.8–9.9% higher than other methods, respectively. The prediction accuracy of the independent test set M495 was 94.8%, which is significantly better than the existing studies. The proposed method also achieves satisfactory predictive performance on plant and non-plant protein submitochondrial datasets. SubMito-XGBoost also plays an important role in new drug design for the treatment of related diseases.

Availability and implementation

The source codes and data are publicly available at https://github.com/QUST-AIBBDRC/SubMito-XGBoost/.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10121611
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Accurate prediction and interpretation of ligand bioactivities are essential for virtual screening and drug discovery. Unfortunately, many important drug targets lack experimental data about the ligand bioactivities; this is particularly true for G protein-coupled receptors (GPCRs), which account for the targets of about a third of drugs currently on the market. Computational approaches with the potential of precise assessment of ligand bioactivities and determination of key substructural features which determine ligand bioactivities are needed to address this issue.

    Results

    A new method, SED, was proposed to predict ligand bioactivities and to recognize key substructures associated with GPCRs through the coupling of screening for Lasso of long extended-connectivity fingerprints (ECFPs) with deep neural network training. The SED pipeline contains three successive steps: (i) representation of long ECFPs for ligand molecules, (ii) feature selection by screening for Lasso of ECFPs and (iii) bioactivity prediction through a deep neural network regression model. The method was examined on a set of 16 representative GPCRs that cover most subfamilies of human GPCRs, where each has 300–5000 ligand associations. The results show that SED achieves excellent performance in modelling ligand bioactivities, especially for those in the GPCR datasets without sufficient ligand associations, where SED improved the baseline predictors by 12% in correlation coefficient (r2) and 19% in root mean square error. Detail data analyses suggest that the major advantage of SED lies on its ability to detect substructures from long ECFPs which significantly improves the predictive performance.

    Availability and implementation

    The source code and datasets of SED are freely available at https://zhanglab.ccmb.med.umich.edu/SED/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Summary

    Single amino acid variations (SAVs) are a primary contributor to variations in the human genome. Identifying pathogenic SAVs can provide insights to the genetic architecture of complex diseases. Most approaches for predicting the functional effects or pathogenicity of SAVs rely on either sequence or structural information. This study presents 〈Lai Yang Rubenstein Uzun Sarkar〉 (LYRUS), a machine learning method that uses an XGBoost classifier to predict the pathogenicity of SAVs. LYRUS incorporates five sequence-based, six structure-based and four dynamics-based features. Uniquely, LYRUS includes a newly proposed sequence co-evolution feature called the variation number. LYRUS was trained using a dataset that contains 4363 protein structures corresponding to 22 639 SAVs from the ClinVar database, and tested using the VariBench testing dataset. Performance analysis showed that LYRUS achieved comparable performance to current variant effect predictors. LYRUS’s performance was also benchmarked against six Deep Mutational Scanning datasets for PTEN and TP53.

    Availability and implementation

    LYRUS is freely available and the source code can be found at https://github.com/jiaying2508/LYRUS.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  3. Abstract Motivation

    Best performing named entity recognition (NER) methods for biomedical literature are based on hand-crafted features or task-specific rules, which are costly to produce and difficult to generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance without hand-crafted features and task-specific knowledge in non-biomedical NER tasks. However, in the biomedical domain, using the same architecture does not yield competitive performance compared with conventional machine learning models.

    Results

    We propose a novel end-to-end deep learning approach for biomedical NER tasks that leverages the local contexts based on n-gram character and word embeddings via Convolutional Neural Network (CNN). We call this approach GRAM-CNN. To automatically label a word, this method uses the local information around a word. Therefore, the GRAM-CNN method does not require any specific knowledge or feature engineering and can be theoretically applied to a wide range of existing NER problems. The GRAM-CNN approach was evaluated on three well-known biomedical datasets containing different BioNER entities. It obtained an F1-score of 87.26% on the Biocreative II dataset, 87.26% on the NCBI dataset and 72.57% on the JNLPBA dataset. Those results put GRAM-CNN in the lead of the biological NER methods. To the best of our knowledge, we are the first to apply CNN based structures to BioNER problems.

    Availability and implementation

    The GRAM-CNN source code, datasets and pre-trained model are available online at: https://github.com/valdersoul/GRAM-CNN.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Alternative polyadenylation (polyA) sites near the 3′ end of a pre-mRNA create multiple mRNA transcripts with different 3′ untranslated regions (3′ UTRs). The sequence elements of a 3′ UTR are essential for many biological activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and translation efficiency. Moreover, numerous studies in the literature have reported the correlation between diseases and the shortening (or lengthening) of 3′ UTRs. As alternative polyA sites are common in mammalian genes, several machine learning tools have been published for predicting polyA sites from sequence data. These tools either consider limited sequence features or use relatively old algorithms for polyA site prediction. Moreover, none of the previous tools consider RNA secondary structures as a feature to predict polyA sites.

    Results

    In this paper, we propose a new deep learning model, called DeepPASTA, for predicting polyA sites from both sequence and RNA secondary structure data. The model is then extended to predict tissue-specific polyA sites. Moreover, the tool can predict the most dominant (i.e. frequently used) polyA site of a gene in a specific tissue and relative dominance when two polyA sites of the same gene are given. Our extensive experiments demonstrate that DeepPASTA signisficantly outperforms the existing tools for polyA site prediction and tissue-specific relative and absolute dominant polyA site prediction.

    Availability and implementation

    https://github.com/arefeen/DeepPASTA

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Most proteins perform their biological functions through interactions with other proteins in cells. Amino acid mutations, especially those occurring at protein interfaces, can change the stability of protein–protein interactions (PPIs) and impact their functions, which may cause various human diseases. Quantitative estimation of the binding affinity changes (ΔΔGbind) caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses.

    Results

    We present SSIPe, which combines protein interface profiles, collected from structural and sequence homology searches, with a physics-based energy function for accurate ΔΔGbind estimation. To offset the statistical limits of the PPI structure and sequence databases, amino acid-specific pseudocounts were introduced to enhance the profile accuracy. SSIPe was evaluated on large-scale experimental data containing 2204 mutations from 177 proteins, where training and test datasets were stringently separated with the sequence identity between proteins from the two datasets below 30%. The Pearson correlation coefficient between estimated and experimental ΔΔGbind was 0.61 with a root-mean-square-error of 1.93 kcal/mol, which was significantly better than the other methods. Detailed data analyses revealed that the major advantage of SSIPe over other traditional approaches lies in the novel combination of the physical energy function with the new knowledge-based interface profile. SSIPe also considerably outperformed a former profile-based method (BindProfX) due to the newly introduced sequence profiles and optimized pseudocount technique that allows for consideration of amino acid-specific prior mutation probabilities.

    Availability and implementation

    Web-server/standalone program, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/SSIPe and https://github.com/tommyhuangthu/SSIPe.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less