skip to main content


Title: Optimal multisensory integration
Abstract

Animals are often confronted with potentially informative stimuli from a variety of sensory modalities. Although there is a large proximate literature demonstrating multisensory integration, no general framework explains why animals integrate. We developed and tested a quantitative model that explains why multisensory integration is not always adaptive and explains why unimodal decision-making might be favored over multisensory integration. We present our model in terms of a prey that must determine the presence or absence of a predator. A greater chance of encountering a predator, a greater benefit of correctly responding to a predator, a lower benefit of correctly foraging, or a greater uncertainty of the second stimulus favors integration. Uncertainty of the first stimulus may either increase or decrease the favorability of integration. In three field studies, we demonstrate how our model can be empirically tested. We evaluated the model with field studies of yellow-bellied marmots (Marmota flaviventer) by presenting marmots with an olfactory-acoustic predator stimulus at a feed station. We found some support for the model's prediction that integration is favored when the second stimulus is less noisy. We hope additional predictions of the model will guide future empirical work that seeks to understand the extent to which multimodal integration might be situation dependent. We suggest that the model is generalizable beyond antipredator contexts and can be applied within or between individuals, populations, or species.

Multisensory integration is often studied from a very proximate view that simply describes the process of integration. We developed a model, the first of its kind, to investigate the situations under which multisensory integration is adaptive. We empirically evaluated the model by investigating the conditions under which yellow-bellied marmots integrated predatory scents and sounds. We found that integration can depend on an animal's situation at a given point in time.

 
more » « less
NSF-PAR ID:
10121711
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Behavioral Ecology
ISSN:
1045-2249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhi-Yun (Ed.)
    Abstract Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions. 
    more » « less
  2. Abstract

    Obtaining body condition is an important life history challenge that directly impacts individual fitness and is particularly important for hibernating animals, whose maintenance of adequate body fat and mass is essential for survival. It is well-documented that host-associated microorganisms play a vital role in animal physiology and behavior. Recent work demonstrates that gut microbes are associated with fat accumulation and obesity, particularly the phyla Firmicutes and Bacteroidetes. The focus of most microbiome studies has been on human health or involved lab-reared animals used as a model system. However, these microbes likely are important for individual fitness in wild populations and provide potential mechanistic insights into the adaptability and survival of wildlife. Here we tested whether symbiotic microorganisms within the phyla of Firmicutes and Bacteroidetes were associated with summer mass gain in an exceptionally well-studied wild population of yellow-bellied marmots (Marmota flaviventer) by analyzing 207 fecal samples collected over 5 summer active seasons. Results showed that marmots with higher mass gain rates had a greater relative abundance of Firmicutes. In contrast, a higher relative abundance of Bacteroidetes was associated with lower mass gain rates, but only for marmots living in harsher environments. Similar patterns were found at the family level where Ruminococcaceae, a member of Firmicutes, was associated with higher mass gain rates, and Muribaculaceae, a member of Bacteroidetes, was associated with lower mass gain rates in harsher environments. Although correlative, these results highlight the potential importance of symbiotic gut microbiota to mass gain in the wild—a trait associated with survival and fitness in many taxonomic groups.

     
    more » « less
  3. Abstract

    With global climates changing rapidly, animals must adapt to new environmental conditions with altered weather and phenology. The key to adapting to these new conditions is adjusting the timing of reproduction to maximize fitness. Using a long‐term dataset on a wild population of yellow‐bellied marmots (Marmota flaviventer) at the Rocky Mountain Biological Laboratory (RMBL), we investigated how the timing of reproduction changed with changing spring conditions over the past 50 years. Marmots are hibernators with a 4‐month active season. It is thus crucial to reproduce early enough in the season to have time to prepare for hibernation, but not too early, as snow cover prevents access to food. Importantly, climate change in this area has, on average, increased spring temperatures by 5°C and decreased spring snowpack by 50 cm over the past 50 years. We evaluated how female marmots adjust the timing of their reproduction in response to changing conditions and estimated the importance of both microevolution and plasticity in the variation in this timing. We showed that, within a year, the timing of reproduction is not as tightly linked to the date a female emerges from hibernation as previously thought. We reported a positive effect of spring snowpack but not of spring temperature on the timing of reproduction. We found inter‐individual variation in the timing of reproduction, including low heritability, but not in its response to changing spring conditions. There was directional selection for earlier reproduction since it increased the number and proportion of pups surviving their first winter. Taken together, the timing of marmot reproduction might evolve via natural selection; however, plastic changes will also be extremely important. Further, future studies on marmots should not operate under the assumption that females reproduce immediately following their emergence.

     
    more » « less
  4. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE 
    more » « less
  5. Abstract

    Body mass is often viewed as a proxy of past access to resources and of future survival and reproductive success. Links between body mass and survival or reproduction are, however, likely to differ between age classes and sexes. Remarkably, this is rarely taken into account in selection analyses. Selection on body mass is likely to be the primary target accounting for juvenile survival until reproduction but may weaken after recruitment. Males and females also often differ in how they use resources for reproduction and survival. Using a long‐term study on body mass and annual survival in yellow‐bellied marmots (Marmota flaviventer), we show that body mass was under stabilizing viability selection in the first years of life, before recruitment, which changed to positive directional selection as age increased and animals matured. We found no evidence that viability selection across age classes on body mass differed between sexes. By investigating the link between running speed and body mass, we show that the capacity to escape predators was not consistent across age classes and followed a quadratic relationship at young ages only. Overall, our results indicate that mature age classes exhibit traditional patterns of positive viability selection on body mass, as expected in a hibernating mammal, but that mass in the first years of life is subjected to stabilizing selection which may come from additional predation pressures that negate the benefits of the largest body masses. Our study highlights the importance to disentangle selection pressures on traits across critical age (or life) classes.

     
    more » « less