skip to main content

Title: History of predator exposure affects cell-mediated immunity in female eastern fence lizards, Sceloporus undulatus (Squamata: Phrynosomatidae)

On exposure to stressors, energy is diverted from non-urgent functions towards those important for immediate survival. The degree and nature of reallocation may be affected by the evolutionary history of the animal. The eastern fence lizard (Sceloporus undulatus) coexists in parts of its range with invasive fire ants (Solenopsis invicta), which attack and wound lizards and elevate stress-relevant hormones (corticosterone), whereas other populations have never been exposed to fire ants. We examined how a history of fire ant invasion affected the immune response in female lizards after exposure to exogenous corticosterone (mimicking exposure to a stressor) during gestation (dosing regimens differed among corticosterone-exposed lizards owing to the constraints of the original studies, but we found no evidence that this affected the outcome of the present study). A history of exposure to predatory stressors (fire ants) and corticosterone treatment affected cell-mediated immunity. Lizards from fire ant-invaded sites had a reduced immune response compared with those from uninvaded sites. Corticosterone treatment had no effect on the immune response of lizards from invaded sites but reduced the immune response of lizards from uninvaded sites. This suggests that an evolutionary history of exposure to wounding alters the immune response to corticosterone. Future work more » on how the immune system responds to environmental threats will be informative for the prediction and management of these threats.

« less
 ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
Biological Journal of the Linnean Society
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is frequently hypothesized that animals employ a generalized “stress response,” largely mediated by glucocorticoid (GC) hormones, such as corticosterone, to combat challenging environmental conditions. Under this hypothesis, diverse stressors are predicted to have concordant effects across biological levels of an organism. We tested the generalized stress response hypothesis in two complementary experiments with juvenile and adult male Eastern fence lizards (Sceloporus undulatus). In both experiments, animals were exposed to diverse, ecologically-relevant, acute stressors (high temperature or red imported fire ants, Solenopsis invicta) and we examined their responses at three biological levels: behavioral; physiological (endocrine [plasma corticosterone and blood glucose concentrations] and innate immunity [complement and natural antibodies]); and cellular responses (gene expression of a panel of five heat-shock proteins in blood and liver) at 30 or 90 min post stress initiation. In both experiments, we observed large differences in the cellular response to the two stressors, which contrasts the similar behavioral and endocrine responses. In the adult experiment for which we had innate immune data, the stressors affected immune function independently, and they were correlated with CORT in opposing directions. Taken together, these results challenge the concept of a generalized stress response. Rather, the stress response was context specific,more »especially at the cellular level. Such context-specificity might explain why attempts to link GC hormones with life history and fitness have proved difficult. Our results emphasize the need for indicators at multiple biological levels and whole-organism examinations of stress.« less
  2. Abstract

    When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collectedmore »eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.

    « less
  3. Ecological impacts associated with ant introductions have received considerable attention, but most studies that report on these impacts contrast species assemblages between invaded and uninvaded sites. Given the low inferential power of this type of space-for-time comparison, alternative approaches are needed to evaluate claims that ant invasions drive native species loss. Here, we use long-term data sets from two different Argentine ant eradication programs on the California Channel Islands to examine how the richness and composition of native ant assemblages change before and after invasion (but prior to the initiation of treatments). At four different sites on two different islands, pre-invasion native ant assemblages closely resembled those at uninvaded (control) sites in terms of species richness, species composition, and the presence of multiple indicator species. Invader arrival coincided with large (> 75%) and rapid (within 1 year) declines in species richness, shifts in species composition, and the loss of indicator species. These impacts will hopefully be reversed by the recolonization of formerly invaded areas by native ant species following Argentine ant treatment, and long-term studies of native ant recovery at these sites are ongoing. Unchecked spread of the Argentine ant on other islands in this archipelago, however, poses a grave threatmore »to native ants, which include a number of endemic taxa.« less
  4. Abstract

    Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs—specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallowsmore »(Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels—but not baseline GCs—were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback—and the dynamic regulation of GCs—are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.

    « less
  5. Abstract

    The glucocorticoid stress response is frequently used to indicate vertebrate response to the environment. Body temperature may affect glucocorticoid concentrations, particularly in ectotherms. We conducted lab manipulations and field measurements to test the effects of body temperature on plasma corticosterone (predominant glucocorticoid in reptiles) in eastern fence lizards (Sceloporus undulatus).First, we acclimated lizards to one of 4 treatments: 22 °C, 29 °C, 33 °C, or 36 °C, and measured cloacal temperatures and plasma corticosterone concentrations at baseline and after exposure to a standardized stressor (cloth bag). Both baseline and stress-induced corticosterone concentrations were lower in lizards with lower body temperatures. Second, we acclimated lizards to 22 °C or 29 °C and exposed them to a standardized (cloth bag) stressor for 3 to 41 min. Lizards acclimated to 29 °C showed a robust increase in plasma corticosterone concentrations with restraint stress, but those at 22 °C showed no such increases in corticosterone concentrations. Third, we measured lizards upon capture from the field. There was no correlation between body temperature and baseline plasma corticosterone in field-caught lizards. These results suggest body temperature can significantly affect plasma corticosterone concentrations in reptiles, which may be of particular concern for experiments conducted under laboratory conditions but may not translate to the field.