The design of completely synthetic proteins from first principles— de novo protein design—is challenging. This is because, despite recent advances in computational protein–structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein–protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg — i.e. , the sequence signature of many helical bundles—the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli . All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design.
more »
« less
EvoEF2: accurate and fast energy function for computational protein design
Abstract MotivationThe accuracy and success rate of de novo protein design remain limited, mainly due to the parameter over-fitting of current energy functions and their inability to discriminate incorrect designs from correct designs. ResultsWe developed an extended energy function, EvoEF2, for efficient de novo protein sequence design, based on a previously proposed physical energy function, EvoEF. Remarkably, EvoEF2 recovered 32.5%, 47.9% and 22.3% of all, core and surface residues for 148 test monomers, and was generally applicable to protein–protein interaction design, as it recapitulated 30.9%, 42.4%, 31.3% and 21.4% of all, core, interface and surface residues for 88 test dimers, significantly outperforming EvoEF on the native sequence recapitulation. We further used I-TASSER to evaluate the foldability of the 148 designed monomer sequences, where all of them were predicted to fold into structures with high fold- and atomic-level similarity to their corresponding native structures, as demonstrated by the fact that 87.8% of the predicted structures shared a root-mean-square-deviation less than 2 Å to their native counterparts. The study also demonstrated that the usefulness of physical energy functions is highly correlated with the parameter optimization processes, and EvoEF2, with parameters optimized using sequence recapitulation, is more suitable for computational protein sequence design than EvoEF, which was optimized on thermodynamic mutation data. Availability and implementationThe source code of EvoEF2 and the benchmark datasets are freely available at https://zhanglab.ccmb.med.umich.edu/EvoEF. Supplementary informationSupplementary data are available at Bioinformatics online.
more »
« less
- Award ID(s):
- 1901191
- PAR ID:
- 10121804
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- ISSN:
- 1367-4803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.more » « less
-
Abstract The exquisite structure-function correlations observed in filamentous protein assemblies provide a paradigm for the design of synthetic peptide-based nanomaterials. However, the plasticity of quaternary structure in sequence-space and the lability of helical symmetry present significant challenges to the de novo design and structural analysis of such filaments. Here, we describe a rational approach to design self-assembling peptide nanotubes based on controlling lateral interactions between protofilaments having an unusual cross-α supramolecular architecture. Near-atomic resolution cryo-EM structural analysis of seven designed nanotubes provides insight into the designability of interfaces within these synthetic peptide assemblies and identifies a non-native structural interaction based on a pair of arginine residues. This arginine clasp motif can robustly mediate cohesive interactions between protofilaments within the cross-α nanotubes. The structure of the resultant assemblies can be controlled through the sequence and length of the peptide subunits, which generates synthetic peptide filaments of similar dimensions to flagella and pili.more » « less
-
Abstract Motivation Protein structure and function are essentially determined by how the side-chain atoms interact with each other. Thus, accurate protein side-chain packing (PSCP) is a critical step toward protein structure prediction and protein design. Despite the importance of the problem, however, the accuracy and speed of current PSCP programs are still not satisfactory. Results We present FASPR for fast and accurate PSCP by using an optimized scoring function in combination with a deterministic searching algorithm. The performance of FASPR was compared with four state-of-the-art PSCP methods (CISRR, RASP, SCATD and SCWRL4) on both native and non-native protein backbones. For the assessment on native backbones, FASPR achieved a good performance by correctly predicting 69.1% of all the side-chain dihedral angles using a stringent tolerance criterion of 20°, compared favorably with SCWRL4, CISRR, RASP and SCATD which successfully predicted 68.8%, 68.6%, 67.8% and 61.7%, respectively. Additionally, FASPR achieved the highest speed for packing the 379 test protein structures in only 34.3 s, which was significantly faster than the control methods. For the assessment on non-native backbones, FASPR showed an equivalent or better performance on I-TASSER predicted backbones and the backbones perturbed from experimental structures. Detailed analyses showed that the major advantage of FASPR lies in the optimal combination of the dead-end elimination and tree decomposition with a well optimized scoring function, which makes FASPR of practical use for both protein structure modeling and protein design studies. Availability and implementation The web server, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/FASPR and https://github.com/tommyhuangthu/FASPR. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds1,2, but has been limited by a lack of suitable protein structures and the complexity of native protein sequence–structure relationships. Here we describe a deep-learning-based ‘family-wide hallucination’ approach that generates large numbers of idealized protein structures containing diverse pocket shapes and designed sequences that encode them. We use these scaffolds to design artificial luciferases that selectively catalyse the oxidative chemiluminescence of the synthetic luciferin substrates diphenylterazine3and 2-deoxycoelenterazine. The designed active sites position an arginine guanidinium group adjacent to an anion that develops during the reaction in a binding pocket with high shape complementarity. For both luciferin substrates, we obtain designed luciferases with high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on diphenylterazine (kcat/Km = 106 M−1 s−1) comparable to that of native luciferases, but a much higher substrate specificity. The creation of highly active and specific biocatalysts from scratch with broad applications in biomedicine is a key milestone for computational enzyme design, and our approach should enable generation of a wide range of luciferases and other enzymes.more » « less