skip to main content


Title: Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica
Abstract

The surface downwelling longwave radiation component (LW↓) is crucial for the determination of the surface energy budget and has significant implications for the resilience of ice surfaces in the polar regions. Accurate model evaluation of this radiation component requires knowledge about the phase, vertical distribution, and associated temperature of water in the atmosphere, all of which control the LW↓ signal measured at the surface. In this study, we examine the LW↓ model errors found in the Antarctic Mesoscale Prediction System (AMPS) operational forecast model and the ERA5 model relative to observations from the ARM West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station and the West Antarctic Ice Sheet (WAIS) Divide. The errors are calculated separately for observed clear-sky conditions, ice-cloud occurrences, and liquid-bearing cloud-layer (LBCL) occurrences. The analysis results show a tendency in both models at each site to underestimate the LW↓ during clear-sky conditions, high error variability (standard deviations > 20 W m−2) during any type of cloud occurrence, and negative LW↓ biases when LBCLs are observed (bias magnitudes >15 W m−2 in tenuous LBCL cases and >43 W m−2 in optically thick/opaque LBCLs instances). We suggest that a generally dry and liquid-deficient atmosphere responsible for the identified LW↓ biases in both models is the result of excessive ice formation and growth, which could stem from the model initial and lateral boundary conditions, microphysics scheme, aerosol representation, and/or limited vertical resolution.

 
more » « less
NSF-PAR ID:
10122199
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
22
ISSN:
0894-8755
Page Range / eLocation ID:
p. 7935-7949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A field campaign at Siple Dome in West Antarctica during the austral summer 2019/20 offers an opportunity to evaluate climate model performance, particularly cloud microphysical simulation. Over Antarctic ice sheets and ice shelves, clouds are a major regulator of the surface energy balance, and in the warm season their presence occasionally induces surface melt that can gradually weaken an ice shelf structure. This dataset from Siple Dome, obtained using transportable and solar-powered equipment, includes surface energy balance measurements, meteorology, and cloud remote sensing. To demonstrate how these data can be used to evaluate model performance, comparisons are made with meteorological reanalysis known to give generally good performance over Antarctica (ERA5). Surface albedo measurements show expected variability with observed cloud amount, and can be used to evaluate a model’s snowpack parameterization. One case study discussed involves a squall with northerly winds, during which ERA5 fails to produce cloud cover throughout one of the days. A second case study illustrates how shortwave spectroradiometer measurements that encompass the 1.6-μm atmospheric window reveal cloud phase transitions associated with cloud life cycle. Here, continuously precipitating mixed-phase clouds become mainly liquid water clouds from local morning through the afternoon, not reproduced by ERA5. We challenge researchers to run their various regional or global models in a manner that has the large-scale meteorology follow the conditions of this field campaign, compare cloud and radiation simulations with this Siple Dome dataset, and potentially investigate why cloud microphysical simulations or other model components might produce discrepancies with these observations.

    significance statement

    Antarctica is a critical region for understanding climate change and sea level rise, as the great ice sheets and the ice shelves are subject to increasing risk as global climate warms. Climate models have difficulties over Antarctica, particularly with simulation of cloud properties that regulate snow surface melting or refreezing. Atmospheric and climate-related field work has significant challenges in the Antarctic, due to the small number of research stations that can support state-of-the-art equipment. Here we present new data from a suite of transportable and solar-powered instruments that can be deployed to remote Antarctic sites, including regions where ice shelves are most at risk, and we demonstrate how key components of climate model simulations can be evaluated against these data.

     
    more » « less
  2. Abstract

    Forecasting Antarctic atmospheric, oceanic, and sea ice conditions on subseasonal to seasonal scales remains a major challenge. During both the freezing and melting seasons current operational ensemble forecasting systems show a systematic overestimation of the Antarctic sea-ice edge location. The skill of sea ice cover prediction is closely related to the accuracy of cloud representation in models, as the two are strongly coupled by cloud radiative forcing. In particular, surface downward longwave radiation (DLW) deficits appear to be a common shortcoming in atmospheric models over the Southern Ocean. For example, a recent comparison of ECMWF reanalysis 5th generation (ERA5) global reanalysis with the observations from McMurdo Station revealed a year-round deficit in DLW of approximately 50 Wm−2in marine air masses due to model shortages in supercooled cloud liquid water. A comparison with the surface DLW radiation observations from the Ocean Observatories Initiative mooring in the South Pacific at 54.08° S, 89.67° W, for the time period January 2016–November 2018, confirms approximately 20 Wm−2deficit in DLW in ERA5 well north of the sea-ice edge. Using a regional ocean model, we show that when DLW is artificially increased by 50 Wm−2in the simulation driven by ERA5 atmospheric forcing, the predicted sea ice growth agrees much better with the observations. A wide variety of sensitivity tests show that the anomalously large, predicted sea-ice extent is not due to limitations in the ocean model and that by implication the cause resides with the atmospheric forcing.

     
    more » « less
  3. null (Ed.)
    Abstract. Cirrus cloud radiative effects are largely affected byice microphysical properties, including ice water content (IWC), ice crystalnumber concentration (Ni) and mean diameter (Di). These characteristics varysignificantly due to thermodynamic, dynamical and aerosol conditions. Inthis work, a global-scale observation dataset is used to examine regionalvariations of cirrus cloud microphysical properties, as well as several keycontrolling factors, i.e., temperature, relative humidity with respect toice (RHi), vertical velocity (w) and aerosol number concentrations (Na).Results are compared with simulations from the National Center forAtmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6).Observed and simulated ice mass and number concentrations are constrained to≥62.5 µm to reduce potential uncertainty from shattered ice indata collection. The differences between simulations and observations arefound to vary with latitude and temperature. Comparing with averagedobservations at ∼100 km horizontal scale, simulations arefound to underestimate (overestimate) IWC by a factor of 3–10 in theNorthern (Southern) Hemisphere. Simulated Ni is overestimated in mostregions except the Northern Hemisphere midlatitudes. Simulated Di isunderestimated by a factor of 2, especially for warmer conditions(−50 to −40 ∘C), possibly due tomisrepresentation of ice particle growth/sedimentation. For RHi effects, thefrequency and magnitude of ice supersaturation are underestimated insimulations for clear-sky conditions. The simulated IWC and Ni show bimodaldistributions with maximum values at 100 % and 80 % RHi, differing fromthe unimodal distributions that peak at 100 % in the observations. For weffects, both observations and simulations show variances of w (σw) decreasing from the tropics to polar regions, but simulations show muchhigher σw for the in-cloud condition than the clear-sky condition.Compared with observations, simulations show weaker aerosol indirect effectswith a smaller increase of IWC and Di at higher Na. These findings provide anobservation-based guideline for improving simulated ice microphysicalproperties and their relationships with key controlling factors at variousgeographical locations. 
    more » « less
  4. Abstract. Radiation fogs at Summit Station, Greenland (72.58 N,38.48 W; 3210 m a.s.l.), are frequently reported by observers. Thefogs are often accompanied by fogbows, indicating the particles are composedof liquid; and because of the low temperatures at Summit, this liquid issupercooled. Here we analyze the formation of these fogs as well as theirphysical and radiative properties. In situ observations of particle size anddroplet number concentration were made using scattering spectrometers near 2 and 10 m height from 2012 to 2014. These data are complemented bycolocated observations of meteorology, turbulent and radiative fluxes, andremote sensing. We find that liquid fogs occur in all seasons with thehighest frequency in September and a minimum in April. Due to thecharacteristics of the boundary-layer meteorology, the fogs are elevated,forming between 2 and 10 m, and the particles then fall toward the surface.The diameter of mature particles is typically 20–25 µm in summer.Number concentrations are higher at warmer temperatures and, thus, higher insummer compared to winter. The fogs form at temperatures as warm as −5 C, while the coldest form at temperatures approaching −40 C. Facilitated by the elevated condensation, in winter two-thirds offogs occurred within a relatively warm layer above the surface when thenear-surface air was below −40 C, as cold as −57 C,which is too cold to support liquid water. This implies that fog particlessettling through this layer of cold air freeze in the air column beforecontacting the surface, thereby accumulating at the surface as ice withoutriming. Liquid fogs observed under otherwise clear skies annually imparted1.5 W m−2 of cloud radiative forcing (CRF). While this is a smallcontribution to the surface radiation climatology, individual events areinfluential. The mean CRF during liquid fog events was 26 W m−2, andwas sometimes much higher. An extreme case study was observed toradiatively force 5 C of surface warming during the coldest partof the day, effectively damping the diurnal cycle. At lower elevations ofthe ice sheet where melting is more common, such damping could signal a rolefor fogs in preconditioning the surface for melting later in the day.

     
    more » « less
  5. Abstract. The tropical tropopause layer (TTL) is a sea of vertical motions. Convectively generated gravity waves create vertical winds on scales of a few to thousands of kilometers as they propagate in a stable atmosphere. Turbulence from gravity wave breaking, radiatively driven convection, and Kelvin–Helmholtz instabilities stirs up the TTL on the kilometer scale. TTL cirrus clouds, which moderate the water vapor concentration in the TTL and stratosphere, form in the cold phases of large-scale (> 100 km) wave activity. It has been proposed in several modeling studies that small-scale (< 100 km) vertical motions control the ice crystal number concentration and the dehydration efficiency of TTL cirrus clouds. Here, we present the first observational evidence for this. High-rate vertical winds measured by aircraft are a valuable and underutilized tool for constraining small-scale TTL vertical wind variability, examining its impacts on TTL cirrus clouds, and evaluating atmospheric models. We use 20 Hz data from five National Aeronautics and Space Administration (NASA) campaigns to quantify small-scale vertical wind variability in the TTL and to see how it varies with ice water content, distance from deep convective cores, and height in the TTL. We find that 1 Hz vertical winds are well represented by a normal distribution, with a standard deviation of 0.2–0.4 m s−1. Consistent with a previous observational study that analyzed two out of the five aircraft campaigns that we analyze here, we find that turbulence is enhanced over the tropical west Pacific and within 100 km of convection and is most common in the lower TTL (14–15.5 km), closer to deep convection, and in the upper TTL (15.5–17 km), further from deep convection. An algorithm to classify turbulence and long-wavelength (5 km < λ < 100 km) and short-wavelength (λ < 5 km) gravity wave activity during level flight legs is applied to data from the Airborne Tropical TRopopause EXperiment (ATTREX). The most commonly sampled conditions are (1) a quiescent atmosphere with negligible small-scale vertical wind variability, (2) long-wavelength gravity wave activity (LW GWA), and (3) LW GWA with turbulence. Turbulence rarely occurs in the absence of gravity wave activity. Cirrus clouds with ice crystal number concentrations exceeding 20 L−1 and ice water content exceeding 1 mg m−3 are rare in a quiescent atmosphere but about 20 times more likely when there is gravity wave activity and 50 times more likely when there is also turbulence, confirming the results of the aforementioned modeling studies. Our observational analysis shows that small-scale gravity waves strongly influence the ice crystal number concentration and ice water content within TTL cirrus clouds. Global storm-resolving models have recently been run with horizontal grid spacing between 1 and 10 km, which is sufficient to resolve some small-scale gravity wave activity. We evaluate simulated vertical wind spectra (10–100 km) from four global storm-resolving simulations that have horizontal grid spacing of 3–5 km with aircraft observations from ATTREX. We find that all four models have too little resolved vertical wind at horizontal wavelengths between 10 and 100 km and thus too little small-scale gravity wave activity, although the bias is much less pronounced in global SAM than in the other models. We expect that deficient small-scale gravity wave activity significantly limits the realism of simulated ice microphysics in these models and that improved representation requires moving to finer horizontal and vertical grid spacing. 
    more » « less