Availability of extensive genetics data across multiple individuals and populations is driving the growing importance of graph based reference representations. Aligning sequences to graphs is a fundamental operation on several types of sequence graphs (variation graphs, assembly graphs, pan-genomes, etc.) and their biological applications. Though research on sequence to graph alignments is nascent, it can draw from related work on pattern matching in hypertext. In this paper, we study sequence to graph alignment problems under Hamming and edit distance models, and linear and affine gap penalty functions, for multiple variants of the problem that allow changes in query alone, graph alone, or in both. We prove that when changes are permitted in graphs either standalone or in conjunction with changes in the query, the sequence to graph alignment problem is NP -complete under both Hamming and edit distance models for alphabets of size ≥2 . For the case where only changes to the sequence are permitted, we present an O(|V|+m|E|) time algorithm, where m denotes the query size, and V and E denote the vertex and edge sets of the graph, respectively. Our result is generalizable to both linear and affine gap penalty functions, and improves upon the run-time complexity of existing algorithms.
more »
« less
Accelerating Sequence Alignment to Graphs
Aligning DNA sequences to an annotated reference is a key step for genotyping in biology. Recent scientific studies have demonstrated improved inference by aligning reads to a variation graph, i.e., a reference sequence augmented with known genetic variations. Given a variation graph in the form of a directed acyclic string graph, the sequence to graph alignment problem seeks to find the best matching path in the graph for an input query sequence. Solving this problem exactly using a sequential dynamic programming algorithm takes quadratic time in terms of the graph size and query length, making it difficult to scale to high throughput DNA sequencing data. In this work, we propose the first parallel algorithm for computing sequence to graph alignments that leverages multiple cores and single-instruction multiple-data (SIMD) operations. We take advantage of the available inter-task parallelism, and provide a novel blocked approach to compute the score matrix while ensuring high memory locality. Using a 48-core Intel Xeon Skylake processor, the proposed algorithm achieves peak performance of 317 billion cell updates per second (GCUPS), and demonstrates near linear weak and strong scaling on up to 48 cores. It delivers significant performance gains compared to existing algorithms, and results in run-time reduction from multiple days to three hours for the problem of optimally aligning high coverage long (PacBio/ONT) or short (Illumina) DNA reads to an MHC human variation graph containing 10 million vertices.
more »
« less
- Award ID(s):
- 1816027
- PAR ID:
- 10122207
- Date Published:
- Journal Name:
- IEEE International Parallel and Distributed Processing Symposium (IPDPS)
- Page Range / eLocation ID:
- 451 to 461
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graph based non-linear reference structures such as variation graphs and colored de Bruijn graphs enable incorporation of full genomic diversity within a population. However, transitioning from a simple string-based reference to graphs requires addressing many computational challenges, one of which concerns accurately mapping sequencing read sets to graphs. Paired-end Illumina sequencing is a commonly used sequencing platform in genomics, where the paired-end distance constraints allow disambiguation of repeats. Many recent works have explored provably good index-based and alignment-based strategies for mapping individual reads to graphs. However, validating distance constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrix-matrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated using real reference graphs, including a human MHC variation graph, and a pan-genome de-Bruijn graph built using genomes of 20 B. anthracis strains. While the one-time indexing time can vary from a few minutes to a few hours using our algorithm, answering a million distance queries takes less than a second.more » « less
-
null (Ed.)Efficient and accurate alignment of DNA/RNA sequence reads to each other or to a reference genome/transcriptome is an important problem in genomic analysis. Nanopore sequencing has emerged as a major sequencing technology and many long-read aligners have been designed for aligning nanopore reads. However, the high error rate makes accurate and efficient alignment difficult. Utilizing the noise and error characteristics inherent in the sequencing process properly can play a vital role in constructing a robust aligner. In this article, we design QAlign, a pre-processor that can be used with any long-read aligner for aligning long reads to a genome/transcriptome or to other long reads. The key idea in QAlign is to convert the nucleotide reads into discretized current levels that capture the error modes of the nanopore sequencer before running it through a sequence aligner.We show that QAlign is able to improve alignment rates from around 80\% up to 90\% with nanopore reads when aligning to the genome. We also show that QAlign improves the average overlap quality by 9.2, 2.5 and 10.8\% in three real datasets for read-to-read alignment. Read-to-transcriptome alignment rates are improved from 51.6\% to 75.4\% and 82.6\% to 90\% in two real datasets.https://github.com/joshidhaivat/QAlign.git.Supplementary data are available at Bioinformatics online.more » « less
-
Alkan, Can (Ed.)Abstract Motivation Pangenome variation graphs model the mutual alignment of collections of DNA sequences. A set of pairwise alignments implies a variation graph, but there are no scalable methods to generate such a graph from these alignments. Existing related approaches depend on a single reference, a specific ordering of genomes or a de Bruijn model based on a fixed k-mer length. A scalable, self-contained method to build pangenome graphs without such limitations would be a key step in pangenome construction and manipulation pipelines. Results We design the seqwish algorithm, which builds a variation graph from a set of sequences and alignments between them. We first transform the alignment set into an implicit interval tree. To build up the variation graph, we query this tree-based representation of the alignments to reduce transitive matches into single DNA segments in a sequence graph. By recording the mapping from input sequence to output graph, we can trace the original paths through this graph, yielding a pangenome variation graph. We present an implementation that operates in external memory, using disk-backed data structures and lock-free parallel methods to drive the core graph induction step. We demonstrate that our method scales to very large graph induction problems by applying it to build pangenome graphs for several species. Availability and implementation seqwish is published as free software under the MIT open source license. Source code and documentation are available at https://github.com/ekg/seqwish. seqwish can be installed via Bioconda https://bioconda.github.io/recipes/seqwish/README.html or GNU Guix https://github.com/ekg/guix-genomics/blob/master/seqwish.scm.more » « less
-
The high-throughput short-reads RNA-seq protocols often produce paired-end reads, with the middle portion of the fragments being unsequenced. We explore if the full-length fragments can be com- putationally reconstructed from the sequenced two ends in the absence of the reference genome—a problem here we refer to as de novo bridging. Solving this problem provides longer, more infor- mative RNA-seq reads, and benefits downstream RNA-seq analysis such as transcript assembly, expression quantification, and splic- ing differential analysis. However, de novo bridging is a challeng- ing and complicated task owing to alternative splicing, transcript noises, and sequencing errors. It remains unclear if the data pro- vides sufficient information for accurate bridging, let alone efficient algorithms that determine the true bridges. Methods have been proposed to bridge paired-end reads in the presence of reference genome (called reference-based bridging), but the algorithms are far away from scaling for de novo bridging as the underlying com- pacted de Bruijn graph (cdBG) used in the latter task often contains millions of vertices and edges. We designed a new truncated Dijk- stra’s algorithm for this problem, and proposed a novel algorithm that reuses the shortest path tree to avoid running the truncated Di- jkstra’s algorithm from scratch for all vertices for further speeding up. These innovative techniques result in scalable algorithms that can bridge all paired-end reads in a cdBG with millions of vertices. Our experiments showed that paired-end RNA-seq reads can be accurately bridged to a large extent. The resulting tool is freely available at https://github.com/Shao-Group/rnabridge-denovo.more » « less
An official website of the United States government

